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The Navier-Stokes equations

Momentum equation

N v Vy=—VP+ Wy +F V-v=0

ot

‘P is the pressure, F an external force, and v the kinematic viscosity,
incompressibility is assumed.

Quadratic invariants (F =0, v =0):

E = f/v? d’x

H=[v-wdx ® = Vxv
Reynolds numbers:

Re=UL/v R,=UA/v

where L is the integral scale and A the Taylor scale.
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Starting from

The energy cascade

[ sin(k,x)cos(k,y)cos(k,z) ]
—cos(k,x)sin(k,y)cos(k,z)

o] N

as initial condition, and replacing in the Navier-Stokes equation
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ot

_— s1né2k0x) [cos(Zkoz) - cos(2k, y)]— 3k.v cos(k,x)sin(k,y)sin(k,z)
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* This process can be repeated, and
smaller eddies are created until

NS : reaching the scale where the
\ S B dissipative term dominates! Taylor &

Green, Proc. Roy. Soc. A 151, 421
(1935).




Turbulence: the Navier-Stokes equations

This leads naturally to a Fourier representation for the velocity in the
momentum equation

a—V+V Vv=-VP+VW?v+F V-v=0

ot

Fourier representation
v(x,t) = [k KX v(k, t)
Energy spectrum

S(k) ~ (Jv(k)|*)

Large, energy containing eddies with correlation scale L. Small scale
eddies with wavenumber k>>1/L.






Restitutive forces: gravity and stratification

Momentum and (potential) temperature equation in the Boussinesq
approximation:

ohu+u-Vu—rvAu =—VP — Nle,
00 +u-VO — kA = Nw,

N is the Brunt-Vaisdla frequency, w is the vertical component of u.
Quadratic invariant (F = 0, v =0):

E = fu® d’x

Froude number:
Fr =

N Ly



Waves in stratified flows

* Momentum and (potential) temperature equation in the Boussinesq
approximation:
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(Rorai, Mininni
& Pouquet 2014)




Restitutive forces: rotation

Momentum equation

) ) 5 )
—(.)l;—l—w xu+20Qxu=-VP+vrVu+F V- -u=0
C

Q2 is the angular velocity.

Quadratic invariants (F = 0, v =0);

E = fu’ d’x
H:fu'(l) d3x o= Vxu
Reynolds, Rossby, and Ekman numbers
LpU U 10 I/
. = ) — ]‘. —_ e — .
Re ~ Ro SO E Re = 20L2

where L is the forcing scale.



Waves in rotating flows




Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)
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Energy transfer and triadic interactions

* We can decompose the velocity field as

uk,t) =ar(k,t)hy +a_(k,t)h_
¢ as(k,t) = Ag(T)e™x!

.ﬁ-



Anisotropy and time scales

Time scales:
* Wave period
k
T.(k) = C,——

* Non-linear time
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Correlation times
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Waves or eddies?
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Clark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus (2014)

See also Hopfinger et al 1982; Bewley et al 2007; Bordes, Moisy, Dauxois, and Cortet 2012



Triadic interactions in rotating turbulence

* The evolution of each velocity mode in Fourier space is

ai - -f[(v Vv, |dpdq - ikP, - Vv, +F,

k+p+q=0 q

* Inrotating flows we have Rossby waves, that slow down the energy transfer
through resonant interactions (Cambon and Jacquin 1989, Cambon, Mansour,
and Godeferd 1997).
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Energy transfer and triadic interactions

0ia’* (t) = Ro Z / Z;;p 1050 g0 ! (Wor TWsp T9s )t Iy
k+p+q=0
k| P9
Sp.— + S + s = O(Ro
k p D q q ( )

* Instability theorem (Waleffe
1993).

* However, this is not valid for too
small values of k..

* See Lamriben, Cortet & Moisy
2011 for an experimental study
of anisotropic transfer.




Phenomenology of rotating turbulence

The interaction of waves and eddies slows down the cascade (Cambon and
Jacquin 1989; Cambon, Mansour, and Godeferd 1997).

Following Kraichnan (1965) phenomenology, we can assume that the time to
move energy across scales is increased by a factor 7, /7,

The inverse of the transfer time then becomes //7,, = 7, /7.

As a result of the resonant interactions, the flow also becomes anisotropic, with
/T, ~u/l,.
The energy transferred between scales per unit of time is
e ~u/ty ~ut/l? andu’ ~1,.
Then the energy spectrum is £(k,) ~ %, (Dubrulle 1992, Zhou 1995)
A more elegant derivation can be found in Cambon and Jacquin (1989).



Energy spectrum in rotating tlows

i Non-helical case:

* An inverse cascade of

‘ I energy develops for
~ ' small Ro.

* The flow becomes
anisotropic.

* The spectrum goes
towards &, <.

Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009)



Helicity as an invariant of 3D Euler

Inertial waves are helicall What happens when they
are not balanced?

Euler equations for an ideal, incompressible fluid with
uniform density (1757):

p(a—u+u-Vu) =-Vp
ot

The equations can be written as

with oO=Vxu
Note that when @xu=0
the non-linear term becomes zero.




Helical flows

H=fco-udV O=Vxu

When maximal, @xu =0

Helicity is thus associated with corkscrew
motions.

As the non-linear term in the momentum
equation becomes zero or negligible, helical
flows are extremelly stable.




Helicity was discovered “recently”

In 1958 Woltjer introduces the magnetic helicity (later
studied by Chandrasekhar and Kendall):

H,=[B'AdV  B=VxA ®
In 1967, Moffatt finds its hydrodynamic equivalent: ) c,
H=fco-udV O=Vxu @, 7
Helicity is zero for 2D flows, and it is a conserved c, B

quantity in 3D hydrodynamics (without and with
rotation). O

Helicity measures the structural complexity of the
flow: it is proportional to the number of /inks in the
field lines.

What is the role of helicity in atmospheric,
geophysical, and astrophysical flows?



The role of helicity

Helical flows are relevant for many
applications:

Solar and geophysical dynamo: helical flows
are known to sustain large-scale dynamo

action (Parker 1955, Pouquet et al. 1976,
Krause & Radler 1986).

Helical velocity fields result in the “alpha-
effect”, and in the generation of magnetic
fields by self-induction.

The large-scale magnetic fields generated by
this mechanism are helical (Titov &
Demoulin).

The mechanism is also relevant in the

presence of kinetic effects (Mininni, Gémez &
Mahajan 2003)

Berger (1999)



The role of helicity

Helical flows are relevant for many applications:
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* Atmospheric flows: Lilly (1986) speculated that

rotating convective supercell storms are more -k |
stable because flows are helical. "j \

 Some authors claim that helicity may play a v TR
role in the self-organization of the flow leading o ( i g
to formation of tornadoes (Montgomery 2006, — + = == 3 3 & o i a5 i w5 e
Levina 2013).

* Indices based on helicity are used for }0km

forecasting purposes.

°[

100 km
Ve——xD



& NOAANWS/Storm Prediction Center Mesoscale Analysis Data
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Helical rotating turbulence

5123 to 30723 spatial resolutions.
Re up to 10000, Ro down to 0.06.

Laminar column-like structures
develop in the flow.

Structures are helical and stable.




Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)
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Relative helicity
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Energy spectrum in rotating tlows
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Non-helical case:

An inverse cascade of energy develops
for small Ro.

The flow becomes anisotropic.
The spectrum goes towards &, ~.
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Helical case:

10 100

Inverse cascade of energy and direct
cascade of helicity.

The direct energy flux is sub-dominant to
the helicity flux.

The energy spectrum becomes steeper
than &, .

Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009)



The helicity cascade
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Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)



Helical rotating turbulence
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* With rotation, energy goes towards large scales and helicity dominates the direct
cascade: the helicity flux is constant & ~ &, 7o, /77 ~ hyu//A1,? Q), and h, ~ [ */u/.

o WE(k)~k, ™" Hk)~k *"orE(k)H(k)~k, ™
* From Schwarz, n < 2.5 (the equality corresponds to maximum helicity).

Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)
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The k-4 spectrum and the direct helicity flux
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The product of the energy and helicity spectra follow a ~ &, #law in several runs
with rotation and helicity.

The amount of helicity flux that goes towards small scales (normalized by the direct
energy flux) increases with decreasing Rossby number, indicating the dominance of
a direct cascade of helicity. Baerenzung et al., JAS (2011).

The “n+m = 4" rule has been shown recently to be exact for rotating turbulence in
the weak turbulence regime (Galtier 2014).



Are there any implications?

* Does the presence of helicity affect the decay

of turbulence? Does it affect the lifetime of
structures?

* Note different decay laws have been
measured in simulations and experiments.

Morize, Moisy, and Rabaud 2005; Morize and Moisy 4
2006, van Bokhoven et al. 2008, Davidson 2010. (-7

* Does helicity affect the turbulent transport 4.7
and diffusion of contaminants? '



Freely decaying flows

1.00 F

T Q0. hel
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Time

Simulations of bounded freely decaying turbulence, with and without rotation/helicity.
Without rotation, helicity plays no role in the decay, except for a delay of the
beginning of the self-similar regime

With rotation, the helical flow decays slower.

The decay laws can be correctly predicted taking into account the presence of

helicity. Teitelbaum & Mininni, PRL 103, 014501 (2009)



Transport and mixing

* Horizontal turbulent diffusion of a passive scalar is smaller in rotating helical
flows than in rotating non-helical flows.

Rodriguez Imazio & Mininni, PRE 87, 023018 (2013)



Transport and mixing
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Rodriguez Imazio & Mininni, Phys. Scripta (2013), PRE (submitted)



Regularity

* From the momentum equation

(Z+ V-V =-VP+W>v+F
dE (k)
= " =—%ka-[(vp-V)vq]d3x—2vZ(k)+8(k)
’/ i"%
‘Lz’c,, »
% \,

Biferale & Titi (2013)



Regularity

* A helical-decimated version of 3D Navier-
Stokes displays an inverse cascade of

energy, with a direct cascade of helicity.

* The system also has regular solutions
(I.e., no singularity).
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Mininni & Pouquet,XPRE 79, 026304 (2009)

Biferale & Titi (2013)



Rotating and stratitied flows

Can we generate large-scale helicity in a “realistic” way?
Momentum equation plus (potential) temperature equation

ou+u-Vu—rvAu =—VP — Nbe, —20e, x u
00 +u-VO0—rAl = Nuw,
V-u=20.

Buoyancy now acts as a restitutive force, allowing for internal gravity waves.

In the ideal case, helicity is not conserved anymore, but total energy (kinetic
plus potential) is.

Froude, Rossby, and Reynolds numbers

_ ugo 7R€: UQLQ
fLO vV

uo

Flr =
"TNL,

Ro




Rotating and stratified tlows




Helicity in rotating and stratified flows

* From the momentum equation

ohu—+u-Vu—rAu q@ NHeZQ@

the equation for the time evolution of the helicity is
dH
dt

At large scales, the following balance can be expected from pressure,
buoyancy and Coriolis forces

N 00
(Hi), .= 3 <w$>J_,z

e —2N<(9 wz> —2vlyg, Ly = <wV XW>



Generation of helicity
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Marino et al., PRE 87, 033016 (2013). See also Levina 2013 and Tur & Yanovsky 2013



Summary

We can distinguish waves and eddies and quantify their strength in time and
space resolved numerical simulations.

The role of helicity in isotropic and homogeneous turbulence is unclear. Spectral
studies are inconclusive as helicity is not positive definite.

In the rotating case, two different spectra seem to arise, depending on the helicity
content of the flow.

The presence of helicity also affects the decay of rotating turbulence, and the
transport and diffusion of passive scalars.

Helicity is injected artificially in these simulations. However, the interplay between
rotation and stratification can spontaneously create helicity in a flow.

Once helicity is created, it affects the evolution of the flow, even in the absence of
rotation.

We are now extending these studies to purely stratified flows.



