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•� Momentum equation 

•�  P is the pressure, F an external force, and � the kinematic viscosity, 
incompressibility is assumed. 

•� Quadratic invariants (F = 0, � =0): 

                E = � v2 d3x�
� � �H = � v�� d3x � �� = 
�v�

•� Reynolds numbers: 

   Re = UL / � � �R� = U� / ��
 where L is the integral scale and � the Taylor scale. 

The Navier-Stokes equations 

�v
�t
+ v ��v = ��P +��2v+F 0=�� v
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(Mininni, Alexakis & Pouquet 2008) 



Starting from 

as initial condition, and replacing in the Navier-Stokes equation 

The energy cascade 
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•  This process can be repeated, and 
smaller eddies are created until 
reaching the scale where the 
dissipative term dominates! Taylor & 
Green, Proc. Roy. Soc. A 151, 421 
(1935). 
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Turbulence: the Navier-Stokes equations 

•� This leads naturally to a Fourier representation for the velocity in the 
momentum equation 

•� Fourier representation 

•� Energy spectrum 

•� Large, energy containing eddies with correlation scale L. Small scale 
eddies with wavenumber k>>1/L. 

�v
�t
+ v ��v = ��P +��2v+F 0=�� v





•  Momentum and (potential) temperature equation in the Boussinesq 
approximation: 

  
 N is the Brunt-Väisälä frequency, w is the vertical component of u. 

•  Quadratic invariant (F = 0, ν =0): 

        E = ∫ u2 d3x"
 

•  Froude number: 

Restitutive forces: gravity and stratification 
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mechanic helicity is not an invariant any longer, it still
plays an essential role in determining the scaling of the
fields at large scales.

Rotating stratified turbulence is important in the at-
mosphere and oceans, playing a crucial role in their dy-
namics. In the presence of waves, advective nonlinear
interactions responsible for the complexity of turbulent
flows have to compete with the waves and an equilib-
rium can be reached at some scale and broken at oth-
ers, the best known example perhaps being the differ-
ence between the Garret-Munk and the Phillips spectra
in internal waves in lakes or the oceans [13, 14], where
wave coupling in resonant triads leads to mixing (like in
coastal currents [15]), to vertical dispersion [16], and to
enhanced dissipation [17]. A particular set of modes plays
a major role, in the so-called slow manifold for which the
frequency of the waves tends to zero, and only turbu-
lent interactions and standing potential vorticity modes
remain. When rotation (only) is present in the fluid,
strong relative helicity can alter the scaling of the distri-
bution of energy among scales and lead to the occurrence
of helical long-lived structures [18].

What happens when stratification is also included? In
the remainder of this paper, we address the question of
rotating stratified turbulence in the absence of forcing,
as studied for example in [19, 20], but concentrating on
the creation of helicity and on the link between the evo-
lution of helicity and the balance of forces such as ro-
tation, stratification, inertia, and pressure gradients, at
scales large enough that the effect of nonlinearities (iner-
tia) is small for strong waves. In the limit of zero nonlin-
earities, the resulting geostrophic balance is crucial for
weather forecasting and simulations of climate change.
However, the consequences of the interplay between ro-
tation and stratification, as far as helical motions are
concerned, have been mostly ignored except for the pio-
neering work of Hide [21]. In spite of this, helicity was
hypothesized to be important in the atmosphere in the
dynamics and persistence of rotating convective storms
[22] on the basis of the weakening of non-linear interac-
tions in the so-called Lamb vector u× ω.

It is also interesting that helicity is measured in the
context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear, and it can be
used as an indicator of storm occurrence [23]. Note that
it has been shown that in some cases (using a specific
fully helical Beltrami forcing function), shear is created
at large-scale in a rotating flow [24].

Since helicity in rotating and stratified flows is no
longer an invariant even in the absence of dissipation, its
presence in these atmospheric storms can be accounted
for but the physical mechanisms governing its creation,
and the structures associated with it, remain unclear. In
this paper, we perform a parametric study using direct
numerical simulations in which we vary both rotation and
stratification. In that framework, we show that a strongly
rotating stratified flow can spontaneously create helicity
at large scales.

II. EQUATIONS AND NUMERICAL
PROCEDURE

A. Boussinesq equations and parameters

We integrate the incompressible Boussinesq equations
in the rotating frame, with constant (solid body) rotation
Ω and gravity g, anti-aligned in the vertical (z) direction,
with θ the buoyancy (in units of velocity), w the verti-
cal velocity, P the pressure, ν the viscosity, and κ the
diffusivity:

∂tu+ u ·∇u− ν∆u =−∇P −Nθez − 2Ωez × u, (1)

∂tθ + u ·∇θ − κ∆θ = Nw, (2)

∇ · u = 0 . (3)

We write u = (u, v, w) and we take a unit Prandtl
number, ν = κ. The Brunt-Väisälä frequency is N =
[−g∂zθ̄/θ]1/2 where θ̄ is the background imposed stratifi-
cation. In the general case, one has inertia-gravity waves
of frequency

ωIG = k−1

√

N2k2⊥ + f2k2z

with f = 2Ω (see, e.g., [19, 25]).
The Froude, Rossby and Reynolds numbers are de-

fined, respectively, as

Fr =
u0

NL0

, Ro =
u0

fL0

, Re =
u0L0

ν
,

with u0 = 1 and L0 = 2π/k0 respectively the r.m.s. ve-
locity and the scale of the initial conditions. These pa-
rameters vary in the range 0.0063 ≤ Fr ≤ 0.2, 0.0063 ≤
Ro ≤ 3.24, and Re ≈ 4000 for grids of 2563 points, while
Re ≈ 10000 using 5123 points. Decay is left to occur
for 3.6 to 7.2 turn-over times, τNL = L0/u0. The initial
velocity field is random, with all three components non-
zero, and it is centered around wavenumbers k0 = [1, 2].
At t = 0, θ = 0, and HV ≈ +0.2. Other initial values
have been used as well to ascertain that the results are
insensitive to them. Note that we do not attempt to take
initially a balanced flow; for the time-stepping point of
view, there is no need to do so, since the resolutions we
employ are high enough that the relatively small Froude
and Rossby numbers we simulate can be handled with
an explicit time stepping resolving the smallest eddy-
turnover time and the smallest Brunt-Väisälä, inertial,
and inertia-gravity frequencies. Furthermore, the gener-
ation of gravity waves that compete with turbulent ed-
dies is part of the overall dynamics of such flows as the
Reynolds number increases.

In the ideal (ν = 0) case, potential vorticity

PV = −fN + f∂zθ −Nωz + ω ·∇θ

is a point-wise invariant, and the total (kinetic plus po-
tential) energy ET = EV +EP is conserved as well (with
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•� Momentum and (potential) temperature equation in the Boussinesq 
approximation: 

  
 

Waves in stratified flows 
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mechanic helicity is not an invariant any longer, it still
plays an essential role in determining the scaling of the
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mosphere and oceans, playing a crucial role in their dy-
namics. In the presence of waves, advective nonlinear
interactions responsible for the complexity of turbulent
�ows have to compete with the waves and an equilib-
rium can be reached at some scale and broken at oth-
ers, the best known example perhaps being the differ-
ence between the Garret-Munk and the Phillips spectra
in internal waves in lakes or the oceans [13, 14], where
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and the structures associated with it, remain unclear. In
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strati�cation. In that framework, we show that a strongly
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II. EQUATIONS AND NUMERICAL
PROCEDURE

A. Boussinesq equations and parameters

We integrate the incompressible Boussinesq equations
in the rotating frame, with constant (solid body) rotation
Ω and gravity g, anti-aligned in the vertical (z) direction,
with θ the buoyancy (in units of velocity), w the verti-
cal velocity, P the pressure, ν the viscosity, and κ the
diffusivity:

∂tu+ u �∇u− ν∆u =−∇P −Nθez − 2Ωez × u�(1)

∂tθ + u �∇θ − κ∆θ = Nw� (2)

∇ �u = 0 � (3)

We write u = (u�v�w) and we take a unit Prandtl
number, ν = κ. The Brunt-V�ais�al�a frequency is N =
[−g∂z�θ�θ]1�2 where �θ is the background imposed strati�-
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of frequency

ωIG = k−1

√

N2k2⊥ + f2k2z

with f = 2Ω (see, e.g., [19, 25]).
The Froude, Rossby and Reynolds numbers are de-

�ned, respectively, as

Fr =
u0
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ν
�

with u0 = 1 and L0 = 2π�k0 respectively the r.m.s. ve-
locity and the scale of the initial conditions. These pa-
rameters vary in the range 0�0063 ≤ Fr ≤ 0�2, 0�0063 ≤
Ro ≤ 3�24, and Re ≈ 4000 for grids of 2563 points, while
Re ≈ 10000 using 5123 points. Decay is left to occur
for 3.6 to 7.2 turn-over times, τNL = L0�u0. The initial
velocity �eld is random, with all three components non-
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At t = 0, θ = 0, and HV ≈ +0�2. Other initial values
have been used as well to ascertain that the results are
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initially a balanced �ow; for the time-stepping point of
view, there is no need to do so, since the resolutions we
employ are high enough that the relatively small Froude
and Rossby numbers we simulate can be handled with
an explicit time stepping resolving the smallest eddy-
turnover time and the smallest Brunt-V�ais�al�a, inertial,
and inertia-gravity frequencies. Furthermore, the gener-
ation of gravity waves that compete with turbulent ed-
dies is part of the overall dynamics of such �ows as the
Reynolds number increases.
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� = ±N k�
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(Rorai, Mininni 
& Pouquet 2014) 



•  Momentum equation 

 Ω is the angular velocity. 
 
•  Quadratic invariants (F = 0, ν =0): 

        E = ∫ u2 d3x"
" " " "H = ∫ u⋅ω d3x " "ω = ∇×u!

 

•  Reynolds, Rossby, and Ekman numbers 
  

 
 

 where LF is the forcing scale. 

Restitutive forces: rotation 



Waves in rotating flows 

� = ±�
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ux = ±iuy
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Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012) 



•  We can decompose the velocity field as 

 

 
 
 
 
 

Energy transfer and triadic interactions 
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lence).
Time correlation functions and decorrelation times

were computed before for rotating fluids, with the fo-
cus on their relevance to predict the acoustic emission
produced by a turbulent flow, and on the effect of flow
anisotropy in the decorrelation time [16]. For magne-
tohydrodynamic flows, time correlation functions and
decorrelation times were recently computed in [17]. In
isotropic and homogeneous turbulence, a proper under-
standing of the decorrelation time is needed to correctly
obtain the frequency spectrum from the Kolmogorov
spectrum in terms of wavenumbers [18]. In this latter
case, the dominant timescale for all modes is the sweep-
ing time, associated with the interactions of the small-
scale eddies with the large-scale energy containing eddies
[19–21]. Finally, time correlation functions are also im-
portant in turbulence closure models, for the dynamics
of Lagrangian particles [22], and for the computation of
turbulent diffusion of passive scalars (see, e.g., [23]).

II. ROTATING FLOWS

A. Waves and eddies

The dynamics of incompressible rotating flows is de-
scribed by the Navier-Stokes equations in a rotating
frame,

∂u

∂t
= −ω × u− 2Ω× u−∇P + ν∇2

u+ F, (1)

together with the incompressibility condition

∇ · u = 0. (2)

In these equations, u is the velocity, ω = ∇ × u is the
vorticity, P is the total pressure (including the centrifugal
term, and normalized by the uniform fluid mass density),
Ω is the rotation frequency, the rotation axis is in the z
direction with Ω = Ωẑ, F is an external mechanical force
per unit of mass density, and ν is the kinematic viscosity.
Solutions to these equations can be characterized by

two dimensionless parameters, the Reynolds number

Re =
UL

ν
, (3)

and the Rossby number

Ro =
U

2LΩ
, (4)

where U is the r.m.s. velocity, and L is the forcing scale.
In the ideal case and in the absence of forcing, the

linearized equations have helical waves hs as solutions,
with s = ±1 corresponding to the two possible circular
polarizations such that ik × hs = skhs, and with k the
wave vector. These waves correspond to inertial waves
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FIG. 1. (Color online) Isotropic energy spectrum E(k) in
the simulation with Ω = 0, and reduced perpendicular en-
ergy spectra E(k⊥) in the simulations with Ω = 4 and 8. In
all three simulations Re ≈ 5000, while Ro ≈ ∞, 0.03, and
0.015 respectively. Kolmogorov and ∼ k−2

⊥ slopes are shown
as a reference. The simulation without rotation has a spec-
trum with a narrow range of scales arguably compatible with
Kolmogorov scaling and followed by a bottleneck and a dis-
sipative range, while the runs with rotation display a steeper
spectrum.

with dispersion relation ωk = s2Ωkz/k. The velocity
field at wave vector k can then be decomposed as [5]

u(k, t) = a+(k, t)h+ + a−(k, t)h−. (5)

In the nonlinear case, a large number of modes are ex-
cited (and nonlinearly coupled) in the velocity field. As
a rotating flow can sustain both waves and eddies, for
sufficiently strong rotation it is safe to assume that for a
large number of wave vectors k the waves will be faster
than the eddies. Then, in wave turbulence theories the
amplitudes as(k, t) are further decomposed into

as(k, t) = As(T )e
iωkt, (6)

where eiωkt is the fast variation at timescale τω = 2π/ωk

associated with the waves, and As(T ) is a slowly varying
modulation on a timescale T ∼ Ro t associated with the
eddies.
Replacing this decomposition in Eq. (1), it is obtained

that energy is only transferred between modes with wave
vectors k, p, and q such that [2, 3, 5]

k+ p+ q = 0, (7)

and

ωk + ωp + ωq = 0. (8)

The last relation, corresponding to the resonant condi-
tion of the waves to have net transfer of energy when in-
tegrated over times longer than the wave period, is also
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FIG. 4. (Color online) Correlation function Γ11(τ) for differ-
ent modes, the wave-like behavior is quite evident in the first
two panels. Time is normalized such that Γ11(τ) = 1/e at
a time of order unity. See text for the definition of τt. Top:
A mode with τω ≪ τsw. Middle: A mode with τω < τsw.
Here τω still dominates, and the correlation function shows
the oscillating behavior expected for a wave-like mode, but
with a slow decay in its modulation proportional to the non-
linear time (indicated by the arrow). Bottom: A mode with
τω > τsw, here all wave-like behavior is lost.

the absence of rotation, the isotropic spectrum has a nar-
row range of wave numbers compatible with Kolmogorov
scaling, followed by a bottleneck and a dissipative range.
In the rotating case the spectrum becomes steeper, as
expected.

The axisymmetric energy spectrum e(k⊥, k∥), obtained
after integrating the power of û(k, t) only over the az-
imuthal angle in Fourier space, provides more informa-
tion on the anisotropy of the flow. As rotation is along
the z axis, k∥ = kz. Figure 2 shows contour plots of
e(k⊥, k∥)/ sin(θk) for the runs with Ω = 4 and with
Ω = 8, and where θk = arctan(k⊥/k∥) is the colatitude
in Fourier space. For an isotropic flow (Ω = 0), contours
of e(k⊥, k∥)/ sin(θk) are circles. As rotation is increased,
energy becomes more concentrated near the axis with
k∥ = 0.

Based on the previous discussion on wave turbulence
theory, and on previous studies of decorrelation times in
isotropic turbulence [19–21] and in rotating flows [16],
we can expect several timescales to be relevant for our
studies. These timescales depend on the wave vector,
and assuming the shorter one dominates the dynamics,
different regions in the axisymmetric energy spectrum
e(k⊥, k∥) can be defined. The first timescale is the period
of the waves

τω(k) = Cω
k

2Ωk∥
, (15)

where Cω is a dimensionless constant of order unity.
This time should be compared with the eddy turnover

time τNL ∼ 1/[k
√

kE(k)]. Simple phenomenological ar-
guments suggest the isotropic energy spectrum in the
inertial range of rotating turbulence follows E(k) ∼
ϵ1/2Ω1/2k−2 [8, 10, 36]. Then, a possible estimation of
the eddy turnover time is

τNL(k) = CNL

1

ϵ1/4Ω1/4k1/2
, (16)

where CNL is another dimensionless constant of order
unity, and where ϵ is the energy injection rate. It is
worth noticing that the spectrum of rotating turbulence
is actually anisotropic and dependent on k∥ and k⊥ in-
stead of simply on k. However, for the purpose of the
discussion here, and as we are only concerned with order
of magnitude estimation of the timescales, we will use
the simplest isotropic expression of E(k).

Sweeping may be the dominant process in the decorre-
lation of Fourier modes when the sweeping time becomes
shorter than the wave period, as is the case in isotropic
turbulence [18–21], and as also found in simulations of ro-
tating turbulence at lower resolution [16]. The sweeping
time is

τsw(k) = Csw

1

Uk
, (17)

where Csw is a dimensionless constant of order unity. Fi-
nally, phenomenological theories of rotating turbulence
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we can expect several timescales to be relevant for our
studies. These timescales depend on the wave vector,
and assuming the shorter one dominates the dynamics,
different regions in the axisymmetric energy spectrum
e(k⊥, k∥) can be defined. The first timescale is the period
of the waves
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This time should be compared with the eddy turnover
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ϵ1/2Ω1/2k−2 [8, 10, 36]. Then, a possible estimation of
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where CNL is another dimensionless constant of order
unity, and where ϵ is the energy injection rate. It is
worth noticing that the spectrum of rotating turbulence
is actually anisotropic and dependent on k∥ and k⊥ in-
stead of simply on k. However, for the purpose of the
discussion here, and as we are only concerned with order
of magnitude estimation of the timescales, we will use
the simplest isotropic expression of E(k).
Sweeping may be the dominant process in the decorre-

lation of Fourier modes when the sweeping time becomes
shorter than the wave period, as is the case in isotropic
turbulence [18–21], and as also found in simulations of ro-
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the absence of rotation, the isotropic spectrum has a nar-
row range of wave numbers compatible with Kolmogorov
scaling, followed by a bottleneck and a dissipative range.
In the rotating case the spectrum becomes steeper, as
expected.
The axisymmetric energy spectrum e(k⊥, k∥), obtained

after integrating the power of û(k, t) only over the az-
imuthal angle in Fourier space, provides more informa-
tion on the anisotropy of the flow. As rotation is along
the z axis, k∥ = kz. Figure 2 shows contour plots of
e(k⊥, k∥)/ sin(θk) for the runs with Ω = 4 and with
Ω = 8, and where θk = arctan(k⊥/k∥) is the colatitude
in Fourier space. For an isotropic flow (Ω = 0), contours
of e(k⊥, k∥)/ sin(θk) are circles. As rotation is increased,
energy becomes more concentrated near the axis with
k∥ = 0.

Based on the previous discussion on wave turbulence
theory, and on previous studies of decorrelation times in
isotropic turbulence [19–21] and in rotating flows [16],
we can expect several timescales to be relevant for our
studies. These timescales depend on the wave vector,
and assuming the shorter one dominates the dynamics,
different regions in the axisymmetric energy spectrum
e(k⊥, k∥) can be defined. The first timescale is the period
of the waves

τω(k) = Cω
k

2Ωk∥
, (15)

where Cω is a dimensionless constant of order unity.
This time should be compared with the eddy turnover

time τNL ∼ 1/[k
√

kE(k)]. Simple phenomenological ar-
guments suggest the isotropic energy spectrum in the
inertial range of rotating turbulence follows E(k) ∼
ϵ1/2Ω1/2k−2 [8, 10, 36]. Then, a possible estimation of
the eddy turnover time is

τNL(k) = CNL

1

ϵ1/4Ω1/4k1/2
, (16)

where CNL is another dimensionless constant of order
unity, and where ϵ is the energy injection rate. It is
worth noticing that the spectrum of rotating turbulence
is actually anisotropic and dependent on k∥ and k⊥ in-
stead of simply on k. However, for the purpose of the
discussion here, and as we are only concerned with order
of magnitude estimation of the timescales, we will use
the simplest isotropic expression of E(k).
Sweeping may be the dominant process in the decorre-

lation of Fourier modes when the sweeping time becomes
shorter than the wave period, as is the case in isotropic
turbulence [18–21], and as also found in simulations of ro-
tating turbulence at lower resolution [16]. The sweeping
time is

τsw(k) = Csw

1

Uk
, (17)

where Csw is a dimensionless constant of order unity. Fi-
nally, phenomenological theories of rotating turbulenceClark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus (2014) 
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the system), and for very long times (at least twice the
slowest timescale in the flow).

In the following we present spectra Eij(k,ω) for several
numerical simulations, defined as

Eij(k,ω) =
1

2
û∗
i (k,ω)ûj(k,ω), (10)

where ûi(k,ω) is the Fourier transform in time and in
space of the i-component of the velocity field u(x, t), and
where the asterisk denotes complex conjugate.

Information on the relevant timescales for each spatial
mode, and on their decorrelation time, can be obtained
also from the time correlation function

Γij(k, τ) =
⟨û∗

i (k, t)ûj(k, t+ τ)⟩t
⟨|û∗

i (k, t)ûj(k, t)|⟩t
, (11)

where ûi(k, t) is the Fourier transform in space of the
i-component of the velocity field, the brackets denote
time average, and only the real part is used. If the
mode ûi(k, t) is dominated by waves in a regime that
satisfies the hypothesis of weak turbulence theory, then
Γii(k, τ) ∼ cos(ωkτ). If nonlinear effects are important,
then the mode with wave vector k should be decorrelated
after a time τD(k) following an approximate exponential
decay

Γii(k, τ) ∼ e−τ/τD(k). (12)

In the following we will define τD as the time at which
the function Γ decays to 1/e of its initial value. Note
this definition is arbitrary, and some authors use the half-
width of the correlation function, or a value based on an
integral timescale (see, e.g., [16, 17])

τD(k) =

∫ ∞

0

Γii(k, τ) dτ. (13)

We verified that no quantitative differences are obtained
by using these other definitions, except for a multiplica-
tive factor of order one in the values of all decorrelation
times.

C. Numerical simulations

Computation of the functions described above require
a significant amount of storage. As a result, only mod-
erate resolution simulations can be performed. We per-
formed three simulations using grids ofN3 = 5123 points,
in a three-dimensional periodic box.

Equations (1) and (2) were solved using a parallel pseu-
dospectral method, and evolved in time with a second
order Runge-Kutta scheme (for more details of the code,
see [29, 30]). The simulations were dealiased with the
2/3-rule (see, e.g., [29]).

The equations are written in dimensionless units. The
periodic domain has length λ0 = 2π, resulting in integer
wavenumbers and in a minimum wave number kmin =

2π/λ0 = 1. Per virtue of the 2/3-rule, the largest resolved
wave number is kmax = N/3, associated with the smallest
resolved wavelength λmin = 2π/kmax = 6π/N . With
this choice, for a characteristic velocity U0 = 1 and a
characteristic length L0 = 1, the turnover time is T0 =
L0/U0 = 1, which we use as unit of time. Ω is then
measured in units of the inverse of time T0.
In previous studies of rotating turbulence in periodic

domains, it was found that if the forcing is applied at
intermediate scales (i.e., scales smaller than the size of
the domain), an inverse cascade develops and most of
the energy ends up in the 2D modes [31]. Evidence of
this inverse cascade has been also observed in experi-
ments [32]. It is unclear for the moment whether this
effect also takes place in homogeneous, unbounded flows,
such as those considered by wave turbulence theories [1].
As a result, we forced the system at the largest scales
available, to prevent the inverse cascade from develop-
ing. However, this has a caveat: the finite domain selects
a discrete set of inertial waves which are normal modes
of the domain (see, e.g., [4, 33]). As a result of the dis-
cretized wavenumbers, the number of modes that satisfy
the resonance condition (8) depends on the wavenumber,
and is smaller (or zero) for smaller wavenumbers, result-
ing in only near-resonances being available [33]. As this
effect is aggravated when domains with non-unity aspect
ratio are used, we restricted our study to boxes with as-
pect ratio of unity.

As we are also interested in correlation times, to pre-
vent imposing external correlation times with the forc-
ing we used a coherent forcing (in opposition to a time-
correlated, or delta-correlated in time forcing function).
We therefore used Taylor-Green forcing

F = F0 [sin(kTGx) cos(kTGy) cos(kTGz)x̂

− cos(kTGx) sin(kTGy) cos(kTGz)ŷ] , (14)

where F0 is the amplitude of the force, which was kept
constant in time. Although the forcing injects energy
directly only into the x- and y-components of the ve-
locity, the resulting flow is three-dimensional because of
pressure gradients that excite the remaining component
of the velocity field. This forcing injects no energy in
the 2D modes, and only affects directly a few modes in
Fourier space corresponding (for the choice kTG = 1)
to the mode k = (1, 1, 1) in the first quadrant, and the
modes obtained after reflections across the axes in Fourier
space. As will become evident later, forcing only these
modes is better for the excitation of waves than forcing,
e.g., all modes in a spherical shell in Fourier space. Fi-
nally, Taylor-Green forcing is of interest as it mimics the
flow generated in some experiments using two counter-
rotating disks [34, 35].

As explained above, the forcing was applied at modes
such as k = (1, 1, 1), which results in a forced wave
number kF = |k| =

√
3, and in a forced length scale

L = 2π/kF = 2π/
√
3. The amplitude of the force was

F0 = 0.277 in all the runs, and this value was chosen to
have an r.m.s. velocity close to 1 in the turbulent steady

See also Fabier, Godeferd and Cambon (2010) 
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the system), and for very long times (at least twice the
slowest timescale in the flow).

In the following we present spectra Eij(k,ω) for several
numerical simulations, defined as
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û∗
i (k,ω)ûj(k,ω), (10)

where ûi(k,ω) is the Fourier transform in time and in
space of the i-component of the velocity field u(x, t), and
where the asterisk denotes complex conjugate.

Information on the relevant timescales for each spatial
mode, and on their decorrelation time, can be obtained
also from the time correlation function
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, (11)

where ûi(k, t) is the Fourier transform in space of the
i-component of the velocity field, the brackets denote
time average, and only the real part is used. If the
mode ûi(k, t) is dominated by waves in a regime that
satisfies the hypothesis of weak turbulence theory, then
Γii(k, τ) ∼ cos(ωkτ). If nonlinear effects are important,
then the mode with wave vector k should be decorrelated
after a time τD(k) following an approximate exponential
decay

Γii(k, τ) ∼ e−τ/τD(k). (12)

In the following we will define τD as the time at which
the function Γ decays to 1/e of its initial value. Note
this definition is arbitrary, and some authors use the half-
width of the correlation function, or a value based on an
integral timescale (see, e.g., [16, 17])

τD(k) =
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Γii(k, τ) dτ. (13)

We verified that no quantitative differences are obtained
by using these other definitions, except for a multiplica-
tive factor of order one in the values of all decorrelation
times.

C. Numerical simulations

Computation of the functions described above require
a significant amount of storage. As a result, only mod-
erate resolution simulations can be performed. We per-
formed three simulations using grids ofN3 = 5123 points,
in a three-dimensional periodic box.

Equations (1) and (2) were solved using a parallel pseu-
dospectral method, and evolved in time with a second
order Runge-Kutta scheme (for more details of the code,
see [29, 30]). The simulations were dealiased with the
2/3-rule (see, e.g., [29]).

The equations are written in dimensionless units. The
periodic domain has length λ0 = 2π, resulting in integer
wavenumbers and in a minimum wave number kmin =

2π/λ0 = 1. Per virtue of the 2/3-rule, the largest resolved
wave number is kmax = N/3, associated with the smallest
resolved wavelength λmin = 2π/kmax = 6π/N . With
this choice, for a characteristic velocity U0 = 1 and a
characteristic length L0 = 1, the turnover time is T0 =
L0/U0 = 1, which we use as unit of time. Ω is then
measured in units of the inverse of time T0.
In previous studies of rotating turbulence in periodic

domains, it was found that if the forcing is applied at
intermediate scales (i.e., scales smaller than the size of
the domain), an inverse cascade develops and most of
the energy ends up in the 2D modes [31]. Evidence of
this inverse cascade has been also observed in experi-
ments [32]. It is unclear for the moment whether this
effect also takes place in homogeneous, unbounded flows,
such as those considered by wave turbulence theories [1].
As a result, we forced the system at the largest scales
available, to prevent the inverse cascade from develop-
ing. However, this has a caveat: the finite domain selects
a discrete set of inertial waves which are normal modes
of the domain (see, e.g., [4, 33]). As a result of the dis-
cretized wavenumbers, the number of modes that satisfy
the resonance condition (8) depends on the wavenumber,
and is smaller (or zero) for smaller wavenumbers, result-
ing in only near-resonances being available [33]. As this
effect is aggravated when domains with non-unity aspect
ratio are used, we restricted our study to boxes with as-
pect ratio of unity.

As we are also interested in correlation times, to pre-
vent imposing external correlation times with the forc-
ing we used a coherent forcing (in opposition to a time-
correlated, or delta-correlated in time forcing function).
We therefore used Taylor-Green forcing

F = F0 [sin(kTGx) cos(kTGy) cos(kTGz)x̂

− cos(kTGx) sin(kTGy) cos(kTGz)ŷ] , (14)

where F0 is the amplitude of the force, which was kept
constant in time. Although the forcing injects energy
directly only into the x- and y-components of the ve-
locity, the resulting flow is three-dimensional because of
pressure gradients that excite the remaining component
of the velocity field. This forcing injects no energy in
the 2D modes, and only affects directly a few modes in
Fourier space corresponding (for the choice kTG = 1)
to the mode k = (1, 1, 1) in the first quadrant, and the
modes obtained after reflections across the axes in Fourier
space. As will become evident later, forcing only these
modes is better for the excitation of waves than forcing,
e.g., all modes in a spherical shell in Fourier space. Fi-
nally, Taylor-Green forcing is of interest as it mimics the
flow generated in some experiments using two counter-
rotating disks [34, 35].

As explained above, the forcing was applied at modes
such as k = (1, 1, 1), which results in a forced wave
number kF = |k| =
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3, and in a forced length scale
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3. The amplitude of the force was
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the system), and for very long times (at least twice the
slowest timescale in the flow).

In the following we present spectra Eij(k,ω) for several
numerical simulations, defined as

Eij(k,ω) =
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û∗
i (k,ω)ûj(k,ω), (10)

where ûi(k,ω) is the Fourier transform in time and in
space of the i-component of the velocity field u(x, t), and
where the asterisk denotes complex conjugate.

Information on the relevant timescales for each spatial
mode, and on their decorrelation time, can be obtained
also from the time correlation function

Γij(k, τ) =
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i (k, t)ûj(k, t+ τ)⟩t
⟨|û∗

i (k, t)ûj(k, t)|⟩t
, (11)

where ûi(k, t) is the Fourier transform in space of the
i-component of the velocity field, the brackets denote
time average, and only the real part is used. If the
mode ûi(k, t) is dominated by waves in a regime that
satisfies the hypothesis of weak turbulence theory, then
Γii(k, τ) ∼ cos(ωkτ). If nonlinear effects are important,
then the mode with wave vector k should be decorrelated
after a time τD(k) following an approximate exponential
decay

Γii(k, τ) ∼ e−τ/τD(k). (12)

In the following we will define τD as the time at which
the function Γ decays to 1/e of its initial value. Note
this definition is arbitrary, and some authors use the half-
width of the correlation function, or a value based on an
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by using these other definitions, except for a multiplica-
tive factor of order one in the values of all decorrelation
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C. Numerical simulations

Computation of the functions described above require
a significant amount of storage. As a result, only mod-
erate resolution simulations can be performed. We per-
formed three simulations using grids ofN3 = 5123 points,
in a three-dimensional periodic box.

Equations (1) and (2) were solved using a parallel pseu-
dospectral method, and evolved in time with a second
order Runge-Kutta scheme (for more details of the code,
see [29, 30]). The simulations were dealiased with the
2/3-rule (see, e.g., [29]).

The equations are written in dimensionless units. The
periodic domain has length λ0 = 2π, resulting in integer
wavenumbers and in a minimum wave number kmin =

2π/λ0 = 1. Per virtue of the 2/3-rule, the largest resolved
wave number is kmax = N/3, associated with the smallest
resolved wavelength λmin = 2π/kmax = 6π/N . With
this choice, for a characteristic velocity U0 = 1 and a
characteristic length L0 = 1, the turnover time is T0 =
L0/U0 = 1, which we use as unit of time. Ω is then
measured in units of the inverse of time T0.
In previous studies of rotating turbulence in periodic

domains, it was found that if the forcing is applied at
intermediate scales (i.e., scales smaller than the size of
the domain), an inverse cascade develops and most of
the energy ends up in the 2D modes [31]. Evidence of
this inverse cascade has been also observed in experi-
ments [32]. It is unclear for the moment whether this
effect also takes place in homogeneous, unbounded flows,
such as those considered by wave turbulence theories [1].
As a result, we forced the system at the largest scales
available, to prevent the inverse cascade from develop-
ing. However, this has a caveat: the finite domain selects
a discrete set of inertial waves which are normal modes
of the domain (see, e.g., [4, 33]). As a result of the dis-
cretized wavenumbers, the number of modes that satisfy
the resonance condition (8) depends on the wavenumber,
and is smaller (or zero) for smaller wavenumbers, result-
ing in only near-resonances being available [33]. As this
effect is aggravated when domains with non-unity aspect
ratio are used, we restricted our study to boxes with as-
pect ratio of unity.

As we are also interested in correlation times, to pre-
vent imposing external correlation times with the forc-
ing we used a coherent forcing (in opposition to a time-
correlated, or delta-correlated in time forcing function).
We therefore used Taylor-Green forcing

F = F0 [sin(kTGx) cos(kTGy) cos(kTGz)x̂

− cos(kTGx) sin(kTGy) cos(kTGz)ŷ] , (14)

where F0 is the amplitude of the force, which was kept
constant in time. Although the forcing injects energy
directly only into the x- and y-components of the ve-
locity, the resulting flow is three-dimensional because of
pressure gradients that excite the remaining component
of the velocity field. This forcing injects no energy in
the 2D modes, and only affects directly a few modes in
Fourier space corresponding (for the choice kTG = 1)
to the mode k = (1, 1, 1) in the first quadrant, and the
modes obtained after reflections across the axes in Fourier
space. As will become evident later, forcing only these
modes is better for the excitation of waves than forcing,
e.g., all modes in a spherical shell in Fourier space. Fi-
nally, Taylor-Green forcing is of interest as it mimics the
flow generated in some experiments using two counter-
rotating disks [34, 35].

As explained above, the forcing was applied at modes
such as k = (1, 1, 1), which results in a forced wave
number kF = |k| =

√
3, and in a forced length scale

L = 2π/kF = 2π/
√
3. The amplitude of the force was

F0 = 0.277 in all the runs, and this value was chosen to
have an r.m.s. velocity close to 1 in the turbulent steady



Waves or eddies? 

Clark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus (2014) 
See also Hopfinger et al 1982; Bewley et al 2007; Bordes, Moisy, Dauxois, and Cortet 2012 
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•  The evolution of each velocity mode in Fourier space is 

 

•  In rotating flows we have Rossby waves, that slow down the energy transfer 
through resonant interactions (Cambon and Jacquin 1989, Cambon, Mansour, 
and Godeferd 1997). 

Triadic interactions in rotating turbulence 

k+p+q = 0
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•  Instability theorem (Waleffe 
1993). 

•  However, this is not valid for too 
small values of kz. 

•  See Lamriben, Cortet & Moisy 
2011 for an experimental study 
of anisotropic transfer. 

 

Energy transfer and triadic interactions 
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of helicity in the inverse cascade range. We present re-
sults from numerical simulations that use a subgrid scale
model developed in [20]; this model was validated against
DNS of rotating flows in [21–23]. We show that the two

observed spectra, viz., ⇠ k
�5/3
? and ⇠ k�3

? can arise in
full simulations (simulations that resolve all triadic inter-
actions and account for coupling between the 2D and the
3D modes). When the forcing is isotropic, energy goes
from the 3D to the 2D modes and a ⇠ k�3

? spectrum
results for the energy in the slow modes. When more en-
ergy is pumped into the 2D modes, less energy goes from

the 3D to the 2D modes and a ⇠ k
�5/3
? spectrum is seen

for the slow modes.
The kinematics of the nonlinear advection term also

changes significantly as the spectra of slow modes change

from ⇠ k�3

? to ⇠ k
�5/3
? . We study the velocity gra-

dient tensor in all simulations and compute the largest
eigenvalue of the rate of strain tensor. For the case of
anisotropic forcing when the flux of energy between the
3D and the 2D modes reverses and energy at large scales
goes from the 2D to the 3D modes, a significant amount
of shear is created at large scales. This introduces a new
shear timescale ⌧sh that is independent of wavenumber.
As a result, the spectrum for the total energy approaches
a ⇠ k�1 power law.
The remainder of this paper is organized as follows. In

Sec. II we discuss previous results, introduce equations
and notations used in the rest of the paper, and derive
equations to study the coupling between modes and the
energy transfer between scales. In Sec. III we present
the LES model used in the numerical simulations and
describe all the runs as well as the di↵erent spectra used
to characterize scaling laws in the inverse cascade range.
Finally, in Sec. IV we present and discuss the numerical
results, while in Sec. V we conclude with brief remarks
and pointers to some open questions.

II. INERTIAL WAVES AND ENERGY
TRANSFER TO THE SLOW MANIFOLD

A. Equations

The non-dimensionalized incompressible Navier-Stokes
equations with global rotation, ⌦ = ⌦ẑ, are as follows:

@tu+ (u ·r)u+
1

Ro
ẑ ⇥ u = �rP +

1

Re
r2

u+ f , (1)

r · u = 0 , (2)

where u is the instantaneous velocity field, P is the
pressure term, f is an external force per unit of mass,
the Rossby number is Ro = U

0

(2L
0

⌦)�1 (where U
0

and L
0

are respectively normalized velocity and length
scales taken to be unity) and the Reynolds number is
Re = U

0

L
0

/⌫ (where ⌫ is the kinematic viscosity).
The forcing term f is introduced in the Navier-Stokes

equation to study the inverse cascade of energy. In the

simulations presented in this paper, besides Re and Ro
defined at characteristic length scales, we will be inter-
ested primarily in the Reynolds and Rossby numbers
based on the forcing scale Lf , at which the external force
is applied. The latter quantities are defined as follows:

Ref =
LfU

⌫
, (3)

and

Rof =
U

2Lf⌦
, (4)

where U is the r.m.s. velocity before the inverse cascade is
initiated (or equivalently, the r.m.s. velocity at the forc-
ing scale at any time during the simulation) in units of
U
0

. The time-scale associated with forcing wavenumber
is defined as,

⌧f :=
Lf

U
. (5)

B. Resonant interactions, slow manifold, and
large-scale structures

The linear, inviscid approximation of Eq. (1) in the ab-
sence of forcing has wave solutions called inertial waves
[10]. In the language of wave turbulence theory, the in-
viscid version of Eq. (1) can be re-written as [24]:
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/2 is the modal transfer coe�cient,
and Ro is assumed to be small and therefore repre-
sents rapid rotation (hence weak nonlinearity). Note that
Eq. (6) is not closed and, hence, any practical solution
can be realized based on an equivalent closed set of equa-
tions (see e.g. [25] for a thorough discussion on closed
models). Furthermore, the Craya-Herring helical basis
hs [26, 27] has been used in deriving Eq. (6) with the
canonical basis corresponding to a given wavevector k̂,
 ̂ := k̂ ⇥ ẑ and k̂ ⇥  ̂. The amplitude as of u is asso-
ciated with the helical wave with a dispersion relation

for the wave frequency: !s(k) = 2⌦s
kk
k . Each wave vec-

tor is associated with two waves of opposite polarization,
s = ±1. Clearly, !s(k) = 0 implies a flow restricted to
a plane perpendicular to the rotation axis (i.e., kk = 0).
Hence, 2D modes are also known as slow modes. In other
words, 2D modes correspond to vortical motions with no
fast wave modulation.
The mechanism of transfer of energy towards two di-

mensional modes that is responsible for the formation of
Taylor columns is based on near resonant condition of
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eigenvalue of the rate of strain tensor. For the case of
anisotropic forcing when the flux of energy between the
3D and the 2D modes reverses and energy at large scales
goes from the 2D to the 3D modes, a significant amount
of shear is created at large scales. This introduces a new
shear timescale ⌧sh that is independent of wavenumber.
As a result, the spectrum for the total energy approaches
a ⇠ k�1 power law.
The remainder of this paper is organized as follows. In

Sec. II we discuss previous results, introduce equations
and notations used in the rest of the paper, and derive
equations to study the coupling between modes and the
energy transfer between scales. In Sec. III we present
the LES model used in the numerical simulations and
describe all the runs as well as the di↵erent spectra used
to characterize scaling laws in the inverse cascade range.
Finally, in Sec. IV we present and discuss the numerical
results, while in Sec. V we conclude with brief remarks
and pointers to some open questions.
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equations with global rotation, ⌦ = ⌦ẑ, are as follows:

@tu+ (u ·r)u+
1

Ro
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simulations presented in this paper, besides Re and Ro
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based on the forcing scale Lf , at which the external force
is applied. The latter quantities are defined as follows:
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where U is the r.m.s. velocity before the inverse cascade is
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ing scale at any time during the simulation) in units of
U
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. The time-scale associated with forcing wavenumber
is defined as,
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B. Resonant interactions, slow manifold, and
large-scale structures

The linear, inviscid approximation of Eq. (1) in the ab-
sence of forcing has wave solutions called inertial waves
[10]. In the language of wave turbulence theory, the in-
viscid version of Eq. (1) can be re-written as [24]:
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and Ro is assumed to be small and therefore repre-
sents rapid rotation (hence weak nonlinearity). Note that
Eq. (6) is not closed and, hence, any practical solution
can be realized based on an equivalent closed set of equa-
tions (see e.g. [25] for a thorough discussion on closed
models). Furthermore, the Craya-Herring helical basis
hs [26, 27] has been used in deriving Eq. (6) with the
canonical basis corresponding to a given wavevector k̂,
 ̂ := k̂ ⇥ ẑ and k̂ ⇥  ̂. The amplitude as of u is asso-
ciated with the helical wave with a dispersion relation

for the wave frequency: !s(k) = 2⌦s
kk
k . Each wave vec-

tor is associated with two waves of opposite polarization,
s = ±1. Clearly, !s(k) = 0 implies a flow restricted to
a plane perpendicular to the rotation axis (i.e., kk = 0).
Hence, 2D modes are also known as slow modes. In other
words, 2D modes correspond to vortical motions with no
fast wave modulation.
The mechanism of transfer of energy towards two di-

mensional modes that is responsible for the formation of
Taylor columns is based on near resonant condition of
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the interacting triads [24]:

sk
k||

k
+ sp

p||

p
+ sq

q||

q
= O(Ro) with k+ p+ q = 0. (7)

However, the problem with wave turbulence theory is
that it is not valid for too small values of kk. In fact, the
predicted energy transfer is zero for kk = 0 [28] because
2D and 3D modes are decoupled in such theories at low-
est order. Similar analysis is presented using two-point
closures of turbulence, such as the Eddy Damped Quasi-
Normal Markovian (EDQNM) closure developed earlier
in the context of rotating flows (see, e.g., [29]). Even
a sophisticated asymptotic quasi-normal Markovian the-
ory, built on the EDQNM closure [30, 31], does not deal
with kk = 0. Thus, while the gradual concentration of
energy in close proximity of the slow manifold can be the-
oretically justified to explain numerical and experimental
observations, the exact coupling between the slow man-
ifold and the 3D modes leading to a transfer of energy
from 3D to 2D modes still remains an unresolved prob-
lem. The inverse cascade of energy, that will be further
elaborated upon in Sec. IV, presumably happens in this
slow manifold.
An alternative theory on the egression of columnar

structures is given by [12]; it is based on the conserva-
tion of linear momentum Pz = 1

2

R
V
R

(x ⇥ !)z dV and

of angular momentum Lz =
R
V
R

(x ⇥ u)zdV in the ax-
ial direction (within a cylinder of radius R), resulting
in a relative concentration of the kinetic energy density
within this cylinder where it disperses to form columnar
clouds. This holds in the linear time scale ⌦�1, when the
non-linear term is small and hence can be neglected in
comparison with the Coriolis term (U

0

⌧ ⌦L
0

). How-
ever, the percentage of total energy contained within the
cylinder falls as (⌦t)�1, so the columns eventually be-
come weak, although the energy density remains higher
within the cylinder than outside. The time scale asso-
ciated with this process, ⌧

⌦

⇠ ⌦�1, will be relevant for
the analysis of the inverse cascade regime in the following
sections.

C. Coupling between modes and energy transfer

Lewis Fry Richardson’s famous couplet, ‘Big whirls
have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity ’ is the an-
tithesis of observations made by experimentalists [5] and
analysts [15, 16] in the context of rotating turbulence.
The notion of inverse cascade of energy to large scales

is well known in 2D turbulence [32] (also see e.g., [17])
and may be justified in simple terms on the basis of
Fjørtoft’s theorem due to the conservation of quadratic
invariants (see, e.g., [25]). In other words, nonlinear tri-
adic interactions conserve both the energy and the en-
strophy, Z :=

⌦
!2

↵
/2, and as the latter is advected to-

wards smaller scales, a fraction of the energy cascades to-
wards larger scales to maintain the balance in each triad.

As discussed in the introduction, the justification for an
inverse cascade of energy in three-dimensional rotating
turbulence is not so straightforward since the conserva-
tion laws change in three dimensions. Nevertheless, a
similar argument could be made in the case of three di-
mensional flows based on helicity and the possibility of
an inverse cascade of energy may be alluded to, as has
been explained in [24, 33]. In fact, it has been argued
in [24] that interactions between three helical modes of
the same polarization s, will lead to an inverse energy
cascade for the same reason as has been postulated by
Kraichnan [34] and Fjørtoft in the two dimensional case.
Numerical simulations of three dimensional flows, where
the non-linear interactions have been restricted to iden-
tically polarized wave numbers in all triads, further cor-
roborate the aforementioned argument [35].
In the previous subsection we have summarized theo-

ries that clearly vindicate the notion of a gradual transfer
of energy towards the slow manifold, without being able
to formally account for the exact coupling between the
3D and the 2D modes. However, once the energy is in
the 2D modes and if the coupling between the 2D and
the 3D modes is weak, one can naively expect an in-
verse cascade to develop as in the case of 2D turbulence.
The strength of the coupling between the 2D and the
3D modes has been studied by [36] and also by [37] us-
ing numerical simulations. In the case of infinitely small
Ro and in a periodic box, the 2D modes are expected
to decouple from the 3D modes and evolve under their
own dynamics. This is in agreement with the evidence of
decoupling between the 2D and the 3D modes that was
observed in numerical simulations of freely decaying ro-
tating turbulence [38] and of ideal helical rotating flows
[39]. However, note that some authors claim that these
modes never decouple in infinite domains [40].
The decoupling is further illustrated below based on

the presentation in [37] and extended to consider the
flux of energy interchanged between the 2D and the 3D
modes. It is important to note that Refs. [37–39] studied
rotating flows in the absence of forcing, thereby making
a case for analyzing a completely decoupled set of equa-
tions for the 2D and the 3D modes; however, Ref. [41]
considers the e↵ect of forcing.
We write wavenumbers in three-dimensional Fourier

space using cylindrical coordinates, k = (k?,kk), with
k? = (kx, ky, 0) = (⇢k,�k), k|| = (0, 0, kz) and k = |k|.
We denote the 2D modes in Fourier space as u

2D(k?),
and the 3D or wave modes as u

3D(k). Following [37],
wave vectors are decomposed as follows:

Wk := {k s.t. |k| 6= 0 and k|| 6= 0},
Vk := {k s.t. |k| 6= 0 and k|| = 0}.

Then the velocity field u = (u, v, w) can be decomposed
as:

u(k) =

⇢
u

3D(k) if k 2 Wk

u?(k?) + w(k?)ẑ if k 2 Vk
(8)

Motivation
Rotating flows: simulations and phenomenology

Rotating flows: slow manifold dynamics
Weak-wave turbulence theory

Coupled dynamics of energy and helicity
Wave turbulence schematic and concluding remarks

Waves
Vortices
Inverse energy cascade

Instability thoerem (moving energy towards 2D vortical modes)

Advection term: (u ·r)u F .T . ! P
k=p+q

pu
p

u
q

moves energy across

scales vía triadic interactions.

Instability theorem (Waleffe, 93): successive triads are chosen such
that the resultant wavenumber, k is flatter than the one at any prior
time instances.
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•  The interaction of waves and eddies slows down the cascade (Cambon and 
Jacquin 1989; Cambon, Mansour, and Godeferd 1997). 

•  Following Kraichnan (1965) phenomenology, we can assume that the time to 
move energy across scales is increased by a factor τl /τΩ. 

•  The inverse of the transfer time then becomes 1/τNL= τΩ /τl
2. 

•  As a result of the resonant interactions, the flow also becomes anisotropic, with 
1/τl ~ ul /l⊥. 

•  The energy transferred between scales per unit of time is  

       ε ~ ul
2/τNL ~ ul

4/l⊥2, and ul
2 ~ l⊥. 

•  Then the energy spectrum is E(k⊥) ~  k⊥-2 (Dubrulle 1992, Zhou 1995)  
•  A more elegant derivation can be found in Cambon and Jacquin (1989). 

Phenomenology of rotating turbulence 



Energy spectrum in rotating flows 

Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009) 
 

Non-helical case: 
•  An inverse cascade of 

energy develops for 
small Ro. 

•  The flow becomes 
anisotropic. 

•  The spectrum goes 
towards k⊥-2. 

Ω≠0#

Ω=0#



•� Inertial waves are helical! What happens when they 
are not balanced? 

•� Euler equations for an ideal, incompressible fluid with 
uniform density (1757): 

•� The equations can be written as 

      with 
•� Note that when 
      the non-linear term becomes zero. 

Helicity as an invariant of 3D Euler 
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•  When maximal,  
•  Helicity is thus associated with corkscrew 

motions. 
•  As the non-linear term in the momentum 

equation becomes zero or negligible, helical 
flows are extremelly stable. 

Helical flows 

dVH ∫ ⋅= uω uω ×∇=

0=×uω



•  In 1958 Woltjer introduces the magnetic helicity (later 
studied by Chandrasekhar and Kendall): 

•  In 1967, Moffatt finds its hydrodynamic equivalent: 

•  Helicity is zero for 2D flows, and it is a conserved 
quantity in 3D hydrodynamics (without and with 
rotation). 

•  Helicity measures the structural complexity of the 
flow: it is proportional to the number of links in the 
field lines. 

•  What is the role of helicity in atmospheric, 
geophysical, and astrophysical flows? 

Helicity was discovered “recently” 

dVHm ∫ ⋅= AB

dVH ∫ ⋅= uω

AB ×∇=

uω ×∇=

ω

u



 Helical flows are relevant for many 
applications: 

 
•  Solar and geophysical dynamo: helical flows 

are known to sustain large-scale dynamo 
action (Parker 1955, Pouquet et al. 1976, 
Krause & Rädler 1986).  

•  Helical velocity fields result in the “alpha-
effect”, and in the generation of magnetic 
fields by self-induction. 

•  The large-scale magnetic fields generated by 
this mechanism are helical (Titov & 
Demoulin). 

•  The mechanism is also relevant in the 
presence of kinetic effects (Mininni, Gómez & 
Mahajan 2003) 

The role of helicity 

Introduction to magnetic helicity B173

Figure 4. In the interior of the sun, the equator rotates faster than the poles. Differential rotation
provides a strong source of helicity injection.

The first term represents the effect of twisting motions on the boundary, while the second
represents the bulk transport of helical field across the boundary.

As an example, the rotation in the sun injects magnetic helicity into the solar wind.
Negative helicity flows into the north wind while positive helicity flows into the south (Bieber
et al 1987, Berger and Ruzmaikin 1999). The magnitude of these helicity transfers is
approximately |dK/dt | = 82

�/T , where T is the solar rotation period (roughly 27 Earth
days). Differential rotation has an additional effect, which has an immense impact on solar
activity (Babcock1961,Moffatt 1978). The polar regions rotatemore slowly than the equatorial
regions. As a consequence, net negative magnetic helicity builds up in the north (see figure 4).
This can be measured using (16) with magnetogram data supplying B and with V taken to
be the rotation velocity. The result shows a huge helicity injection into each hemisphere, with
most of the injection at solar minimum. This helicity may be stored deep at the base of the
convection zone. Some of it may escape to the surface along with rising magnetic flux, and
help to power coronal mass ejections (Low 1994, Rust 1994). This would also account for
the hemispheric dependence seen in coronal structures: several observational indicators show
negative helicity in the north and positive in the South (Seehafer 1990, Martin et al 1992,
Pevtsov et al 1994, Rust and Kumar 1996).

Berger (1999) 



 Helical flows are relevant for many applications: 
 
•  Atmospheric flows: Lilly (1986) speculated that 

rotating convective supercell storms are more 
stable because flows are helical. 

•  Some authors claim that helicity may play a 
role in the self-organization of the flow leading 
to formation of tornadoes (Montgomery 2006, 
Levina 2013). 

•  Indices based on helicity are used for 
forecasting purposes. 

The role of helicity 



A measure of the potential for cyclonic updraft 
rotation in right-moving supercells. It is calculated 
for the lowest 1-km and 3-km layers above ground 
level. Large values suggest an increased threat of 
tornadoes. 

Storm relative helicity 



A normalized index to take into account energy 
available in shear. Values greater than 1-2 have 
been associated with significant tornadoes. 

Energy-helicity index 



•  5123 to 30723 spatial resolutions. 
•  Re up to 10000, Ro down to 0.06. 

•  Laminar column-like structures 
develop in the flow. 

•  Structures are helical and stable. 

Helical rotating turbulence 



15363 Enstrophy 

Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012) 



Helicity vz 



Relative helicity 



Helicity Enstrophy 
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Energy spectrum in rotating flows 

Helical case: 
•� Inverse cascade of  energy and direct 

cascade of  helicity. 
•� The direct energy flux is sub-dominant to 

the helicity flux. 
•� The energy spectrum becomes steeper 

than k�-2. 

H�

E�

E (Ro�0.07)�

E (Ro�10)�

Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009) 
 

E (Ro�0.07)0.07)

E (Ro�10)

Non-helical case: 
•� An inverse cascade of energy develops 

for small Ro. 
•� The flow becomes anisotropic. 

•� The spectrum goes towards k�-2. 

��0, h=0�
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The helicity cascade 

Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012) 

H(k) k -1.85#

E(k) k -2.15#



•  With rotation, energy goes towards large scales and helicity dominates the direct 
cascade: the helicity flux is constant δ ~ hl τΩ /τl

2
 ~ hl ul

2/(l⊥2 Ω), and hl  ~ l⊥2/ul
2. 

•  If E(k⊥) ~ k⊥–n, H(k⊥) ~ k⊥-4+n or E(k⊥)H(k⊥) ~ k⊥-4 

•  From Schwarz, n ≤ 2.5 (the equality corresponds to maximum helicity). 

Helical rotating turbulence 

Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012) 

H(k) k -1.85#

E(k) k -2.15#



•  The product of the energy and helicity spectra follow a ~ k⊥-4 law in several runs 
with rotation and helicity.  

•  The amount of helicity flux that goes towards small scales (normalized by the direct 
energy flux) increases with decreasing Rossby number, indicating the dominance of 
a direct cascade of helicity. Baerenzung et al., JAS (2011). 

•  The “n+m = 4” rule has been shown recently to be exact for rotating turbulence in 
the weak turbulence regime  (Galtier 2014). 

The k -4 spectrum and the direct helicity flux 



•  Does the presence of helicity affect the decay 
of turbulence? Does it affect the lifetime of 
structures? 

•  Note different decay laws have been 
measured in simulations and experiments. 
Morize, Moisy, and Rabaud 2005; Morize and Moisy 
2006, van Bokhoven et al. 2008, Davidson 2010. 

•  Does helicity affect the turbulent transport 
and diffusion of contaminants? 

Are there any implications? 



•  Simulations of bounded freely decaying turbulence, with and without rotation/helicity. 
•  Without rotation, helicity plays no role in the decay, except for a delay of the 

beginning of the self-similar regime 
•  With rotation, the helical flow decays slower. 
•  The decay laws can be correctly predicted taking into account the presence of 

helicity. 

Freely decaying flows 

Teitelbaum & Mininni, PRL 103, 014501 (2009) 

Ω=0, h=0#
Ω=0, h≈1#

Ω≠0, h≈1#

Ω≠0, h=0#



•  Horizontal turbulent diffusion of a passive scalar is smaller in rotating helical 
flows than in rotating non-helical flows. 

Transport and mixing 

Rodriguez Imazio & Mininni, PRE 87, 023018 (2013) 
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FIG. 11: Passive scalar concentration in a horizontal plane in
run Cx1, at times t = 0, 1, 1.5, and 2.5 from left to right and
from top to bottom.

FIG. 12: Passive scalar concentration in a horizontal plane at
t = 1 in runs Ax1 (left, no rotation) and Ex1 (right, Ω = 8).

before in [8] and explained as an effect of the Coriolis
force. In our runs, the passive scalar at t = 0 is con-
centrated in a narrow band around x = π. The average
flux is thus towards positive values of x for x > π, and
towards negative values of x for x < π (i.e., in the direc-
tion of −∇θ, see Fig. 2). The Coriolis force in Eq. (1)
is −2Ωẑ × u and therefore on the average this force cre-
ates a drift of the flux towards positive values of y in the
x > π region, and towards negative values of y for x < π
[8]. This explains the bending of the initial profile we
observe of the runs with rotation, that is not observed in
the runs without rotation (see Fig. 12 for a comparison).
Diffusion in the parallel direction is of a different na-

ture, and more strongly dependent of the structures
that emerge in rotating turbulent flows. Rapidly ro-
tating flows are characterized by columnar structures in
the velocity field and vorticity, associated with a quasi-
bidimensionalization of the flow. The mechanism un-
derlying the transfer of energy towards two dimensional
modes and responsible for the formation of these columns

FIG. 13: Passive scalar concentration in a vertical plane in
run Cz1, at times t = 0, 1, 1.5, and 2.5 from left to right and
from top to bottom.

seems to be associated with wave resonances in the
energy-exchanging triadic interactions [36]. Two-point
closures of turbulence, such as the Eddy Damped Quasi-
Normal Markovian closure (see, e.g., [33]) successfully ex-
plain the emergence of columns with the same principle.
However, there are alternative theories that consider the
formation of columns as the result of a relative concentra-
tion of kinetic energy in cylindrical structures resulting
from the conservation of linear and angular momentum
[37].
Columnar structures have been reported in many nu-

merical simulations of turbulent flows (see, e.g., [38]). As
these columns live for long times and move across the do-
main, they play an important role in the mixing of the
passive scalar. Figure 13 shows a cut in a vertical plane
of the passive scalar concentration at different times in
run Cz1. Note that diffusion is different from the one ob-
served in horizontal planes in the same run (Fig. 11), and
from the one observed in the isotropic and homogeneous
case (Fig. 12 (a)). The passive scalar is diffused from its
initial profile in vertical stripes, that are stretched fur-
ther (thus increasing the mixing) as time evolves. This
stripes are created by updrafts or downdrafts inside the
columns. As these columns go through the region with
large concentration of the passive scalar, the updrafts or
downdrafts mix the passive scalar with the regions im-
mediately above or below.

IV. CONCLUSIONS

We used 56 direct numerical simulations with regular
spatial resolution of 5123 grid points to measure turbu-
lent diffusion in directions parallel and perpendicular to
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Figure 6. (a) Reduced perpendicular helicity spectrum, (b) energy
spectrum and (c) passive scalar spectrum for run B3 (helical
turbulent flow with � = 16). In all cases slopes are indicated as
references.

for V (k?) is associated with a change in the energy spectrum
when helicity is present.

The energy spectrum in (helical) runs B2 and B3 is
steeper than in the (non-helical) runs A2 and C2, as can be
also seen in figures 5 and 6. The inertial ranges are compatible
with a ⇠ k�2.2

? power law. This result is compatible with the
results reported in [14], where numerical simulations were
presented showing that in rotating helical flows the direct flux
of helicity dominates over the direct flux of energy, affecting
the scaling law for the energy in the direct cascade range.
A phenomenological argument was also presented, which,
assuming that the direct cascade of helicity is dominant,
results in a spectrum E(k?)H(k?) ⇠ k�4

? . In other words, if
the energy spectrum satisfies E(k) ⇠ k�n , then the helicity
should scale as H(k) ⇠ k4�n; n becomes larger (and the
energy spectrum steeper) as the flow becomes more helical,
with the limit n = 2.5 for the case of a maximally helical
turbulent flow (in practice, this limit cannot be obtained,
as a flow with maximal helicity has the nonlinear term in
the Navier–Stokes equation equal to zero, and therefore no
transfer can take place).

The behavior of the helicity spectrum in runs B2 and B3
is consistent with the phenomenological argument described
above. In figures 5 and 6, a scaling ⇠ k�1.8

? is indicated
as a reference, which seems compatible with the behavior

Figure 7. Reduced perpendicular spectra for the helicity
(dash-dotted line), energy (solid line), and passive scalar (dashed
line) compensated for, respectively, by k�1.8

? , k�2.2
? and k�1.4

? , in
helical runs (a) B2 and (b) B3.

of H(k?). Compensated spectra for the energy, the helicity
and the passive scalar for runs B2 and B3 are shown in
figure 7. Good agreement between the reference slopes and
the numerical data is apparent.

Following the phenomenological argument mentioned
above for the energy spectrum, we can put forward a simple
argument to explain the difference observed in the scaling of
the passive scalar in rotating helical and non-helical turbulent
flows. From equation (3), it can be seen on dimensional
grounds that for scales in the inertial range, the passive scalar
flux across the scale l? (equal to the passive scalar injection
rate) � = @t h✓2i must be

� ⇠ ✓2
l?ul?

l?
, (7)

where ✓l? is the characteristic concentration of the passive
scalar at the scale l?, and ul? the characteristic velocity (since
the flow becomes anisotropic in the presence of rotation, we
are assuming that most of the fluctuations are concentrated
in structures with weak variation in the direction along the
axis of rotation). If � is constant in the inertial range, we can
estimate the passive scalar spectrum V (k?) ⇠ ✓2

l?/k? from
equation (7) as

V (k?) ⇠ � l2
?

ul?
. (8)

If the energy spectrum is E(k?) ⇠ k�n
? , and therefore the

characteristic velocity at a scale l? is ul? ⇠ l1�n
? , the passive

scalar spectrum results

V (k?) ⇠ � l
5�n

2
? ⇠ �k

� 5�n
2

? . (9)
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FIG. 10: (a) Averaged horizontal concentration ✓ in run B1
x

,
at times t = 0, 0.5, 1, 1.25, and 1, 5. denoted by solid, dotted,
dash, dash-dotted and dash-triple-dotted lines respectively.
(b) Horizontal flux at the same times. (c) Horizontal turbu-
lent di↵usion at the same times.

and averaging we obtain

@✓

@t
= �r · (u✓0), (21)

and subtracting this equation from Eq. (3) we obtain

@✓

@t
= �r · (u✓). (22)

We can integrate this last equation assuming the flow
is correlated over the integral eddy turnover time ⌧ , to
obtain

✓0 ⇡ �⌧r · (u✓) = �⌧u ·r✓, (23)

FIG. 11: Horizontal turbulent di↵usion as a function of time
for runs A3

x

(solid) and B1
x

(dashed) (non-rotating, non-
helical and helical, respectively).

where incompressibility was used. Then, replacing in
Eq. (21),

@✓

@t
⇡ @

@x
i

(⌧u
i

u
j

)
@✓

@x
i

, (24)

where the coe�cient ⌧u
i

u
j

can be interpreted as a tur-
bulent di↵usion. If the flow is isotropic, then D ⇡ ⌧u2. A
more refined mean field derivation can be found in [41–
43], while two point closure derivations can be found in
[44, 45].

Although the argument above is only illustrative, it
gives an interesting hint to the possible cause of the re-
duced perpendicular di↵usion in helical rotating flows.
As the perpendicular energy spectrum in this case is
steeper than in the absence of helicity, then the smaller
energy at small scales results in less mixing and di↵usion.

Figure 15 shows the mean vertical passive scalar con-
centration ✓(z), the mean vertical flux ✓v

z

(z), and the
vertical di↵usion D

z

(z) at di↵erent times in run B3
z

. In
this case, the profiles are more similar to those obtained
in the isotropic and homogeneous case: ✓(z) and ✓v

z

(z)
are respectively symmetric and antisymmetric with re-
spect to z = ⇡.

As in the case of horizontal di↵usion, we can obtain
the vertical turbulent di↵usion coe�cient as a function
of time by computing the mean value of D

z

(z, t) for all
values of z. Figure 16 shows D

z

(t) for runs A5
z

and B3
z

(both with R
o

= 0.01, non-helical and helical, respectiv-
elly). It is clearly seen that vertical di↵usion is increased
in the presence of helicity.

Results shown above suggest that horizontal di↵usion
is a↵ected by the presence of helicity. Figure 17 shows
a horizontal plane of the passive scalar concentration in
runs A5

x

and B3
x

at t = 1. As previously shown in [14],
the initial Gaussian profile in run A5

x

di↵uses in time,
and also bends and rotates. This bending is due to the
Coriolis force, and was previously observed in [12]. For
run B3

x

, we also observe this bending e↵ect, although
the initial profile is much less di↵used.



•  From the momentum equation 

Regularity 

( ) Fvvvv
+∇+−∇=∇⋅+

∂
∂ 2νP
t

⇒
dE(k)
dt

= − vk ⋅ v p ⋅∇( )vq%& '(∫
p,q
∑ d3x − 2νZ(k)+ε(k)

Biferale & Titi (2013)  
 



•  A helical-decimated version of 3D Navier-
Stokes displays an inverse cascade of 
energy, with a direct cascade of helicity. 

•  The system also has regular solutions 
(i.e., no singularity). 

Regularity 

Biferale & Titi (2013)  
 

H#

E#

Mininni & Pouquet, PRE 79, 026304 (2009) 



•  Can we generate large-scale helicity in a “realistic” way? 
•  Momentum equation plus (potential) temperature equation 

  
 
 

•  Buoyancy now acts as a restitutive force, allowing for internal gravity waves. 
•  In the ideal case, helicity is not conserved anymore, but total energy (kinetic 

plus potential) is. 
•  Froude, Rossby, and Reynolds numbers 

  

Rotating and stratified flows 

2

mechanic helicity is not an invariant any longer, it still
plays an essential role in determining the scaling of the
fields at large scales.
Rotating stratified turbulence is important in the at-

mosphere and oceans, playing a crucial role in their dy-
namics. In the presence of waves, advective nonlinear
interactions responsible for the complexity of turbulent
flows have to compete with the waves and an equilib-
rium can be reached at some scale and broken at oth-
ers, the best known example perhaps being the differ-
ence between the Garret-Munk and the Phillips spectra
in internal waves in lakes or the oceans [13, 14], where
wave coupling in resonant triads leads to mixing (like in
coastal currents [15]), to vertical dispersion [16], and to
enhanced dissipation [17]. A particular set of modes plays
a major role, in the so-called slow manifold for which the
frequency of the waves tends to zero, and only turbu-
lent interactions and standing potential vorticity modes
remain. When rotation (only) is present in the fluid,
strong relative helicity can alter the scaling of the distri-
bution of energy among scales and lead to the occurrence
of helical long-lived structures [18].
What happens when stratification is also included? In

the remainder of this paper, we address the question of
rotating stratified turbulence in the absence of forcing,
as studied for example in [19, 20], but concentrating on
the creation of helicity and on the link between the evo-
lution of helicity and the balance of forces such as ro-
tation, stratification, inertia, and pressure gradients, at
scales large enough that the effect of nonlinearities (iner-
tia) is small for strong waves. In the limit of zero nonlin-
earities, the resulting geostrophic balance is crucial for
weather forecasting and simulations of climate change.
However, the consequences of the interplay between ro-
tation and stratification, as far as helical motions are
concerned, have been mostly ignored except for the pio-
neering work of Hide [21]. In spite of this, helicity was
hypothesized to be important in the atmosphere in the
dynamics and persistence of rotating convective storms
[22] on the basis of the weakening of non-linear interac-
tions in the so-called Lamb vector u× ω.
It is also interesting that helicity is measured in the

context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear, and it can be
used as an indicator of storm occurrence [23]. Note that
it has been shown that in some cases (using a specific
fully helical Beltrami forcing function), shear is created
at large-scale in a rotating flow [24].
Since helicity in rotating and stratified flows is no

longer an invariant even in the absence of dissipation, its
presence in these atmospheric storms can be accounted
for but the physical mechanisms governing its creation,
and the structures associated with it, remain unclear. In
this paper, we perform a parametric study using direct
numerical simulations in which we vary both rotation and
stratification. In that framework, we show that a strongly
rotating stratified flow can spontaneously create helicity
at large scales.

II. EQUATIONS AND NUMERICAL
PROCEDURE

A. Boussinesq equations and parameters

We integrate the incompressible Boussinesq equations
in the rotating frame, with constant (solid body) rotation
Ω and gravity g, anti-aligned in the vertical (z) direction,
with θ the buoyancy (in units of velocity), w the verti-
cal velocity, P the pressure, ν the viscosity, and κ the
diffusivity:

∂tu+ u ·∇u− ν∆u =−∇P −Nθez − 2Ωez × u, (1)

∂tθ + u ·∇θ − κ∆θ = Nw, (2)

∇ · u = 0 . (3)

We write u = (u, v, w) and we take a unit Prandtl
number, ν = κ. The Brunt-Väisälä frequency is N =
[−g∂zθ̄/θ]1/2 where θ̄ is the background imposed stratifi-
cation. In the general case, one has inertia-gravity waves
of frequency

ωIG = k−1

√

N2k2⊥ + f2k2z

with f = 2Ω (see, e.g., [19, 25]).
The Froude, Rossby and Reynolds numbers are de-

fined, respectively, as

Fr =
u0

NL0

, Ro =
u0

fL0

, Re =
u0L0

ν
,

with u0 = 1 and L0 = 2π/k0 respectively the r.m.s. ve-
locity and the scale of the initial conditions. These pa-
rameters vary in the range 0.0063 ≤ Fr ≤ 0.2, 0.0063 ≤
Ro ≤ 3.24, and Re ≈ 4000 for grids of 2563 points, while
Re ≈ 10000 using 5123 points. Decay is left to occur
for 3.6 to 7.2 turn-over times, τNL = L0/u0. The initial
velocity field is random, with all three components non-
zero, and it is centered around wavenumbers k0 = [1, 2].
At t = 0, θ = 0, and HV ≈ +0.2. Other initial values
have been used as well to ascertain that the results are
insensitive to them. Note that we do not attempt to take
initially a balanced flow; for the time-stepping point of
view, there is no need to do so, since the resolutions we
employ are high enough that the relatively small Froude
and Rossby numbers we simulate can be handled with
an explicit time stepping resolving the smallest eddy-
turnover time and the smallest Brunt-Väisälä, inertial,
and inertia-gravity frequencies. Furthermore, the gener-
ation of gravity waves that compete with turbulent ed-
dies is part of the overall dynamics of such flows as the
Reynolds number increases.
In the ideal (ν = 0) case, potential vorticity

PV = −fN + f∂zθ −Nωz + ω ·∇θ

is a point-wise invariant, and the total (kinetic plus po-
tential) energy ET = EV +EP is conserved as well (with
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FIG. 3: (Color online) Visualization of the buoyancy θ in runs with 5123 grids, for Re ≈ 10000, Fr = 0.1, and Ro = 0.4 (left)
and for the same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and
light (green) strata represent respectively positive and negative variations in θ around its mean, with sizable fluctuations and
structuring, and with more turbulent eddies at higher Froude number.

and accelerators for the Fast Fourier Transforms (FFTs).
Note that the MPI communication required to complete
the multidimensional Fourier transforms is all-to-all. The
code uses a “slab” (1D) domain decomposition among
MPI tasks, and OpenMP provides a second level of par-
allelization within each slab or MPI task. The code can
compute in double or single precision based on resolu-
tion. GHOST performance has been tested on a variety
of platforms, and has been shown to scale linearly up to
98304 processors, with grids up to 61443 points. Data is
stored at regular intervals and post-processed, both for
quantitative analysis and visualization, the latter being
performed using the VAPOR visualization software [29].

In Table I we give the major parameters of the simula-
tions used in this paper. Note that we have restricted our
analysis to moderate values of N/f , in particular we have
for all cases N/f ≥ 1/2. This is because, in the purely
rotating case (N → 0), helicity is exactly conserved and
thus as one goes into that parameter regime, the cre-
ation of helicity has to become negligible with decreas-
ing N at fixed f ; furthermore, many geophysical flows
are dominated by gravity waves except at the largest
scales. There are studies that show for example that,
for purely rotating flows, a turbulence regime affected by
waves develops for Ro < 0.2, whereas at intermediate
Rossby numbers nonlinear transfer is reduced but the in-
verse cascade characteristic of the bi-dimensionalization
of the flow does not take place [30]. Also, for strong waves
(strong rotation or stratification), turbulence barely de-
velops resulting in steep spectra; this is related to the
value achieved by the so-called buoyancy Reynolds num-

ber RB defined below, and the equivalent concept for
rotating flows, RR. Considering this region of interest in
parameter space, and given the constraints of computing
in three dimensions without resorting to modeling of the
small-scales, only a limited exploration of the parameters
is performed.

III. RESULTS

A. Generation of helicity for small nonlinearity

As mentioned in the introduction, helicity is not con-
served in a rotating and stratified flow, and thus helicity
can in principle be created by the flow evolution. In
this section we briefly show how a balance of the forces
at large scales can result in net helicity of a preferred
sign in the flow. We start from the primitive Boussinesq
equations given above and simplify them using several
hypotheses. Assuming stationarity, weak nonlinearities
and small dissipation at large scales, it results that the
equilibrium level of helicity in rotating stratified turbu-
lence is proportional to N/f and to the correlation be-
tween buoyancy and vertical shear. A result consistent
with this behavior was originally obtained by Hide [21].
We start with the momentum equation, Eq. (2). As

later we will compute time averages, we will assume the
system is in a steady state and neglect the time deriva-
tive. We will also consider viscous effects are small,
and neglect the dissipative term. Computing the ver-
tical derivative of the remaining terms and taking the
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FIG. 3: (Color online) Visualization of the buoyancy θ in runs with 5123 grids, for Re ≈ 10000, Fr = 0.1, and Ro = 0.4 (left)
and for the same Re, Fr = 0.025, and Ro = 0.05 (right). The vertical direction is indicated by the blue arrow; dark (blue) and
light (green) strata represent respectively positive and negative variations in θ around its mean, with sizable fluctuations and
structuring, and with more turbulent eddies at higher Froude number.

and accelerators for the Fast Fourier Transforms (FFTs).
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for all cases N/f ≥ 1/2. This is because, in the purely
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Rossby numbers nonlinear transfer is reduced but the in-
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small-scales, only a limited exploration of the parameters
is performed.
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mechanic helicity is not an invariant any longer, it still
plays an essential role in determining the scaling of the
fields at large scales.
Rotating stratified turbulence is important in the at-

mosphere and oceans, playing a crucial role in their dy-
namics. In the presence of waves, advective nonlinear
interactions responsible for the complexity of turbulent
flows have to compete with the waves and an equilib-
rium can be reached at some scale and broken at oth-
ers, the best known example perhaps being the differ-
ence between the Garret-Munk and the Phillips spectra
in internal waves in lakes or the oceans [13, 14], where
wave coupling in resonant triads leads to mixing (like in
coastal currents [15]), to vertical dispersion [16], and to
enhanced dissipation [17]. A particular set of modes plays
a major role, in the so-called slow manifold for which the
frequency of the waves tends to zero, and only turbu-
lent interactions and standing potential vorticity modes
remain. When rotation (only) is present in the fluid,
strong relative helicity can alter the scaling of the distri-
bution of energy among scales and lead to the occurrence
of helical long-lived structures [18].
What happens when stratification is also included? In

the remainder of this paper, we address the question of
rotating stratified turbulence in the absence of forcing,
as studied for example in [19, 20], but concentrating on
the creation of helicity and on the link between the evo-
lution of helicity and the balance of forces such as ro-
tation, stratification, inertia, and pressure gradients, at
scales large enough that the effect of nonlinearities (iner-
tia) is small for strong waves. In the limit of zero nonlin-
earities, the resulting geostrophic balance is crucial for
weather forecasting and simulations of climate change.
However, the consequences of the interplay between ro-
tation and stratification, as far as helical motions are
concerned, have been mostly ignored except for the pio-
neering work of Hide [21]. In spite of this, helicity was
hypothesized to be important in the atmosphere in the
dynamics and persistence of rotating convective storms
[22] on the basis of the weakening of non-linear interac-
tions in the so-called Lamb vector u× ω.
It is also interesting that helicity is measured in the

context of forecasting storms and tropical tornadoes, in
particular in the presence of strong shear, and it can be
used as an indicator of storm occurrence [23]. Note that
it has been shown that in some cases (using a specific
fully helical Beltrami forcing function), shear is created
at large-scale in a rotating flow [24].
Since helicity in rotating and stratified flows is no

longer an invariant even in the absence of dissipation, its
presence in these atmospheric storms can be accounted
for but the physical mechanisms governing its creation,
and the structures associated with it, remain unclear. In
this paper, we perform a parametric study using direct
numerical simulations in which we vary both rotation and
stratification. In that framework, we show that a strongly
rotating stratified flow can spontaneously create helicity
at large scales.

II. EQUATIONS AND NUMERICAL
PROCEDURE

A. Boussinesq equations and parameters

We integrate the incompressible Boussinesq equations
in the rotating frame, with constant (solid body) rotation
Ω and gravity g, anti-aligned in the vertical (z) direction,
with θ the buoyancy (in units of velocity), w the verti-
cal velocity, P the pressure, ν the viscosity, and κ the
diffusivity:

∂tu+ u ·∇u− ν∆u =−∇P −Nθez − 2Ωez × u, (1)

∂tθ + u ·∇θ − κ∆θ = Nw, (2)

∇ · u = 0 . (3)

We write u = (u, v, w) and we take a unit Prandtl
number, ν = κ. The Brunt-Väisälä frequency is N =
[−g∂zθ̄/θ]1/2 where θ̄ is the background imposed stratifi-
cation. In the general case, one has inertia-gravity waves
of frequency

ωIG = k−1

√

N2k2⊥ + f2k2z

with f = 2Ω (see, e.g., [19, 25]).
The Froude, Rossby and Reynolds numbers are de-

fined, respectively, as

Fr =
u0

NL0

, Ro =
u0

fL0

, Re =
u0L0

ν
,

with u0 = 1 and L0 = 2π/k0 respectively the r.m.s. ve-
locity and the scale of the initial conditions. These pa-
rameters vary in the range 0.0063 ≤ Fr ≤ 0.2, 0.0063 ≤
Ro ≤ 3.24, and Re ≈ 4000 for grids of 2563 points, while
Re ≈ 10000 using 5123 points. Decay is left to occur
for 3.6 to 7.2 turn-over times, τNL = L0/u0. The initial
velocity field is random, with all three components non-
zero, and it is centered around wavenumbers k0 = [1, 2].
At t = 0, θ = 0, and HV ≈ +0.2. Other initial values
have been used as well to ascertain that the results are
insensitive to them. Note that we do not attempt to take
initially a balanced flow; for the time-stepping point of
view, there is no need to do so, since the resolutions we
employ are high enough that the relatively small Froude
and Rossby numbers we simulate can be handled with
an explicit time stepping resolving the smallest eddy-
turnover time and the smallest Brunt-Väisälä, inertial,
and inertia-gravity frequencies. Furthermore, the gener-
ation of gravity waves that compete with turbulent ed-
dies is part of the overall dynamics of such flows as the
Reynolds number increases.
In the ideal (ν = 0) case, potential vorticity

PV = −fN + f∂zθ −Nωz + ω ·∇θ

is a point-wise invariant, and the total (kinetic plus po-
tential) energy ET = EV +EP is conserved as well (with
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Initial v [EP /ET ]
∗ σ0

V σ∗
V σ∗∗

V

1. TG 0.01 0.0 0.0 0.0
6. ABCN0 0.00 0.99 0.13 0.103
7. ABC 0.15 0.99 0.22 0.76
12. RNDN0 0 1.00 0.13 0.08
13. RND 0.18 1.00 0.02 0.11
15. RND2Fr 0.18 1.00 0.04 0.13
17. RNDk2 0.17 1.00 0.11 0.70

TABLE II. Some relevant parameters for a selected set of the runs listed in Table I. The ratio of potential to kinetic energy is
given at peak of enstrophy t∗, while the relative helicity is reported at t = 0 (σ0

V ), at the peak of the enstrophy (σ∗
V ), and at

t = 20 (σ∗∗
V ). Note the increase of relative helicity over time in all stratified cases, after an initial startup phase.

III. RESULTS

A. The temporal decay of helicity

Here we examine the temporal behavior of the flows
whose initial conditions are given in Table I. For some of
the simulations, the ratio between the potential energy
and the total energy at the peak of the enstrophy, the
value of the relative helicity at the initial time σ0

V , at
the peak of the enstrophy σ∗

V , and at t = 20, σ∗∗
V , are

reported in Table II.
A hint as to the outcome one may expect from the

time evolution of helicity is obtained by considering the
dynamical equations. By taking the inner product of Eq.
(1) with ω and volume-averaging, it can be shown that
the time derivative of the total helicity is

dH

dt
= −2N ⟨θ ωz⟩ − 2νZH , ZH = ⟨ω ·∇× ω⟩ , (12)

with ZH the helical enstrophy (sometimes called super-
helicity [40]), a pseudo-scalar as helicity itself. Note that,
locally (as opposed to globally), helicity can be produced
through alignment of vorticity and shear [41]. However,
globally and for an initially helical flow, ZH is respon-
sible for the viscous decay of helicity. In the absence of
dissipation, helicity is conserved for non stratified flows,
while the first term on the r.h.s. of Eq. (12) can act as
a source or a sink for stratified flows, thus breaking the
conservation.
In Fig. 1 (a) and (b) we first show the temporal evo-

lution of the kinetic enstrophy, ZV (t), and potential en-
strophy, ZP (t). All the flows have Fr ≈ 0.022, with, as
initial conditions, either an ABC flow, an ABC2C flow,
or a Taylor-Green flow. For comparison, one case with
ABC initial conditions, is unstratified. The time in all
the figures is expressed in units of the initial eddy turn-
over time τNL = 2π/(k0U0). We see that the produc-
tion of enstrophy, and therefore, the transfer of energy
to small scales, is damped substantially in the presence
of stratification, both for the ABC and TG initial condi-
tions, although its maximum is not considerably delayed.
This is expected because the effect of waves through the
buoyancy forces is to reduce the nonlinear interactions,
as well as to suppress, in part, the vertical velocity com-
ponent. Observe that the stratified TG flow displays a

significantly stronger peak for the kinetic and potential
enstrophy than the stratified ABC-like flows for which
the nonlinear terms are (initially) equal to zero.
In Fig. 1 (c) and (d) the temporal evolution of the total

helicity and relative helicity for the same flows is shown.
In the absence of stratification and for ABC initial condi-
tions, helicity decays rather rapidly (exponentially after
an initial nonlinear phase) and is close to zero for t > 6.
On the contrary, stratified ABC and ABC2C flows dis-
play slow decays of helicity, with strong oscillations at
first when vz(t = 0) ̸= 0, linked to gravity waves. Finally,
we observe that the TG flow has zero initial helicity, and
none is created by stratification. It is interesting that in
the stratified cases helicity decays almost linearly with
time, and much more slowly than the energy, which, as
will be shown later and as is often the case for turbulent
flows, decays as a power law with time.
In the absence of stratification the relative helicity

σV (t) decays rapidly, the flow becoming closer to mirror-
symmetric. On the other hand, when gravity is switched
on and initial helicity is non-zero, σV (t) approaches the
maximum value. This may be simply due to the fact
that helicity decays more slowly than energy, leading to
a growth of their ratio. More precisely, it can be seen
from the data shown in Fig. 1 and later in Fig. 6
that dtH << (dtEV )1/2(dtZV )1/2, hence, in Eq. (4) the
denominator increases much faster than the numerator,
causing σV to grow.
The flows analyzed until now are well-ordered, cen-

tered at large scales and with phase coherence between
modes at t = 0. We also examined initial conditions with
randomized phases yet maintaining a high initial relative
helicity (see Table II). In Fig. 2 (a) and (b) the behavior
of ZV (t) and ZP (t) for random flows with k0 = 3− 4 or
k0 = 2 is shown. It is seen that the unstratified flow dis-
plays a higher peak of the kinetic enstrophy, as noticed
before, followed by the less stratified case (Fr ≈ 0.044);
while, when Fr ≈ 0.022 the case with k0 = 2 has a lower
peak than the case with larger k0. This is likely due to
the fact that when k0 = 2 the flow preserves some helic-
ity, which inhibits the energy decay. A similar behavior
is seen for the potential enstrophy: the peak is higher
for the less stratified case, and is lower when helicity is
better preserved.
In random flows, the time evolution of the helicity and
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nR Fr Ro in

np = 2563 ; Re = 4189

1 0.0063 0.0063 * , **
2 0.0063 0.0127 * , **
3 0.0063 0.0190 –
4 0.0063 0.0507 –
5 0.0063 0.0728 **
6 0.0063 0.1013 * , **

7 0.0084 0.0084 * , **

8 0.0127 0.0063 * , **
9 0.0127 0.0127 * , **
10 0.0127 0.0190 * , **
11 0.0127 0.0253 * , **
12 0.0127 0.0317 **
13 0.0127 0.0384 **
14 0.0127 0.0507 –
15 0.0127 0.1013 –
16 0.0127 0.1458 –
17 0.0127 0.2111 * , **

18 0.0253 0.0253 –
19 0.0253 0.0507 –
20 0.0253 0.1013 –
21 0.0253 0.2026 –
22 0.0253 0.2913 * , **
23 0.0253 0.4054 –

24 0.0507 0.0507 –
25 0.0507 0.1267 –

26 0.1013 0.4224 –
27 0.1013 0.8444 * , **
28 0.1013 1.1515 *
29 0.1013 1.6888 *

30 0.1266 0.1266 –

31 0.2026 0.2026 –
32 0.2026 0.6079 –
33 0.2026 0.8106 –
34 0.2026 1.6888 –
35 0.2026 2.3268 * , **
36 0.2026 3.2428 –

np = 5123 ; Re = 10649

37 0.0063 0.0127 –
38 0.0063 0.0190 *

39 0.0127 0.0190 * , **
40 0.0127 0.0317 * , **
41 0.0127 0.0443 **
42 0.0127 0.0633 * , **
43 0.0127 0.1013 –

44 0.0253 0.0507 * , **

45 0.1013 0.4053 *

TABLE I: List of runs analyzed in this paper with some
characteristic parameters: run number nR, linear resolution
np, Reynolds Re, Froude Fr and Rossby Ro numbers. A star
in the “in” column indicates points that are in the scatter
plot with N/f < 3, and two stars indicate those in the plot
with RB < 20 or RR < 20 (see Figs. 4 and 5).

dot product of the result with u, we get

u · ∂z (u ·∇u) = −u ·∇∂zP −Nwθ − 2u · ∂z (Ωez × u) ,
(4)

where the velocity field u was written with Cartesian
components (u, v, w).

The last term in this equation is

2u · ∂z (Ωez × u) = −f(u∂zv − v∂zu) = fH⊥, (5)

where H⊥ is part of the total helicity density. Indeed, we
decompose the helicity as HV ≡ ⟨H⊥⟩+ ⟨H+⟩, where the
brackets denote an average, and where H⊥ is the helicity
density associated with u⊥,

H⊥ ≡ u⊥ · (∇× u⊥), (6)

and H+ is the remainder, H+ = u∂yw − v∂xw + wωz .
With strong rotation and stratification, H⊥ ≫ H+, and
H⊥ alone essentially determines the total helicity. For ex-
ample, measurements of ⟨H⊥⟩⊥,z (where the subindices
⊥ and z indicates the averages are volume averages per-
formed in the horizontal and vertical directions) found
in modeling simulations of hurricanes are seen to be two
orders of magnitude larger than ⟨H+⟩ [31]. Note also
that the H⊥ density is proportional to the so-called (cell-
relative) environmental helicity, when integrated over the
vertical (see, e.g., [23]).

From Eqs. (4) and (5), it follows that:

H⊥ = −
1

f
[Nw∂zθ + u ·∇∂zP + u · ∂z (u ·∇u)] . (7)

When integrated over volume, the second term vanishes
for an incompressible flow. The third term is cubic in the
velocity and in a turbulent flow proportional to ϵ(fLz)−1,
where ϵ is the energy flux, and Lz a characteristic vertical
scale. For flows with strong rotation and stratification,
this quantity is expected to be small (see below). As a
result, after integration and neglecting the third term,
we obtain

⟨H⊥⟩⊥,z = −
N

f

〈

w
∂θ

∂z

〉

⊥,z

. (8)

This expression was obtained before by Hide [21], in
a slightly different form after integrating by parts and
assuming periodic boundary conditions

⟨H⊥⟩⊥,z =
N

f

〈

θ
∂w

∂z

〉

⊥,z

. (9)

It should be noted that the original derivation in [21]
assumes the nonlinear term is zero and that the flow is
in geostrophic balance. In that case, from hydrostatic
balance ∂zw = 0 and helicity in the flow vanishes. Small
nonlinearities are crucial to ensure that the second-order
correlator in Eqs. (8) or (9) is non-zero.

We thus conclude that, if nonlinearities are small, the
production of helicity in strongly rotating stratified tur-
bulence is such that its equilibrium level is directly pro-
portional to N/f , and results from an interplay between
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range of validity in N/f corresponds in part to the range
identified in [53] on the basis of a lack of resonant inter-
actions for these parameters.
We also show in the shaded insets of Fig. 5 (top, mid-

dle) the same quantity for all the runs (i.e., all values of
N/f , corresponding to all 9 runs with 5123 points and
36 runs with 2563 points). For N/f > 3, creation of he-
licity still occurs, though not quite at the level predicted
by Eq. (8). The middle graph in Fig. 5 gives the same
scatter plot but thresholded for the buoyancy and the
inertial Reynolds numbers, RB,R < 20 (the inset shows
again all points for comparison). In both cases of thresh-
olding, about half the points are selected (roughly, 20),
and the points in common between the top and middle
scatter plot are 80% that again (namely, 16, see Table
I). We can interpret this fact by saying that scales (tem-
poral and spatial) are not sufficiently separated and it
is difficult to sort out what may be the dominant effect
for flows to obey the relationship of Eq. (8): a compara-
ble rotation and stratification, or simply a low buoyancy
Reynolds number. Finally, for completion, we give in
Fig. 5 (bottom) ⟨H⊥(t = 0)⟩⊥ − ⟨H⊥(t)⟩ξ as a function
of N/f alone. Note how most of the points pile up near
negative values, even for large values of N/f . Since a
growth of net helicity, and similarly of relative helicity, is
not observed in freely decaying 3D homogeneous turbu-
lence, with no rotation and no stratification, this further
confirms that the production of helicity is characteristic
of the regime under study. We finally note that it seems
to be controlled more by the imposed stratification than
by the Rossby number, in agreement with the fact that in
rotating turbulence, helicity is conserved in the absence
of dissipation.

V. CONCLUDING REMARKS

A parametric study of decaying rotating stratified tur-
bulence shows that helicity is spontaneously produced at
large scales, and that for N/f < 3 (or, ReFr2 < 20 to-
gether with ReRo2 < 20), its value is associated with cor-
relations between buoyancy and vertical shear, as derived
in [21] (for non-stratified flows see [44], and for the mag-
netic case see [50]). This creation of helicity still takes
place for larger values of N/f , and thus confirms the pos-
sibility, for geophysical and astrophysical flows, that the
combination of rotation and stratification creates helicity
which in turn can be the source of large-scale magnetic
fields, as observed in stars and planets.
Helicity production in rotating stratified flows can also

be related to the observation of large-scale helicity in the
atmosphere of the Earth, although it is not occurring
in our study through an instability involving anisotropic
small-scale helicity as studied before in [51, 52], but
rather through a quasi-linearization of the large-scale dy-
namics. Such large-scale helical flows might be relevant
to the persistence of large-scale convective storms and to
the onset phase of hurricanes [4, 52]. It has also been
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FIG. 5: Helical geostrophic balance ⟨H⊥(t = 0)⟩⊥,z −

⟨H⊥(t)⟩ξ as predicted by Eq. (8), temporally and vertically
averaged for runs with N/f < 3 (top). In the shaded insets,
the same data is given for all 45 runs of this study. Each
symbol corresponds to a value of Fr (see labels), and the 9
solid symbols indicate runs on grids of 5123 points at higher
Reynolds numbers. In the middle graph, the points are se-
lected using RB < 20, RR < 20 (the inset shows again all
points for comparison). For completion the same scatter plot
as a function of N/f only, using the same symbols, is given
at the bottom.

Marino et al., PRE 87, 033016 (2013). See also Levina 2013 and Tur & Yanovsky 2013 



Summary 

•  We can distinguish waves and eddies and quantify their strength in time and 
space resolved numerical simulations. 

•  The role of helicity in isotropic and homogeneous turbulence is unclear. Spectral 
studies are inconclusive as helicity is not positive definite. 

•  In the rotating case, two different spectra seem to arise, depending on the helicity 
content of the flow. 

•  The presence of helicity also affects the decay of rotating turbulence, and the 
transport and diffusion of passive scalars. 

•  Helicity is injected artificially in these simulations. However, the interplay between 
rotation and stratification can spontaneously create helicity in a flow. 

•  Once helicity is created, it affects the evolution of the flow, even in the absence of 
rotation. 

•  We are now extending these studies to purely stratified flows.#


